Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1S9PpwawHnbXVESdJgwe2rOXa7D-H4_7R
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -q gradio
|
11 |
+
import gradio as gr
|
12 |
+
from transformers import pipeline
|
13 |
+
|
14 |
+
# Load the fine-tuned model and tokenizer
|
15 |
+
classifier = pipeline("text-classification", model="Mehdi009/Antisemitism_Harassment_Detection")
|
16 |
+
|
17 |
+
# Function to make predictions
|
18 |
+
def predict_antisemitism(text):
|
19 |
+
result = classifier(text)
|
20 |
+
label = result[0]['label']
|
21 |
+
score = result[0]['score']
|
22 |
+
return {label: round(score, 4)}
|
23 |
+
|
24 |
+
# Create Gradio Interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=predict_antisemitism,
|
27 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a tweet here..."),
|
28 |
+
outputs=gr.Label(num_top_classes=2),
|
29 |
+
title="Antisemitism Harassment Detection",
|
30 |
+
description="Enter a tweet or sentence, and the model will predict whether it contains antisemitic harassment.",
|
31 |
+
examples=[
|
32 |
+
["Jews control the media and banks."],
|
33 |
+
["I support Israel’s right to exist and defend itself."],
|
34 |
+
["Zionazi are ruining everything!"],
|
35 |
+
["We need more understanding and less hate."]
|
36 |
+
]
|
37 |
+
)
|
38 |
+
|
39 |
+
# Launch the demo
|
40 |
+
iface.launch(debug=True,share=True)
|