import streamlit as st import stable_whisper import json import soundfile as sf import io # Create a dropdown to select the model model_name = st.selectbox("Select a model", ["base", "small", "medium", "large", "large-v2"]) # Load the selected model model = stable_whisper.load_model(model_name) # Create a file uploader for the audio file audiofile = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) # Create a button to run the prediction if st.button('Transcribe'): if audiofile is not None: # Read the audio file file_bytes = audiofile.read() audio_data, sample_rate = sf.read(io.BytesIO(file_bytes)) # Transcribe the audio file result = model.transcribe(audio_data) # Convert the result to JSON and display it result_json = json.loads(result) st.json(result_json) else: st.write("Please upload an audio file.")