File size: 8,586 Bytes
056c529
01ff6b3
 
 
 
056c529
62f49fe
4a684d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98b502
4a684d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98b502
9050bc9
4a684d4
eb5fb7a
 
 
 
5d8c2f0
a18ccbb
 
 
 
 
 
 
eb5fb7a
a18ccbb
2661fcb
 
 
 
4a684d4
2661fcb
eb5fb7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a684d4
 
62f49fe
fd4e0e8
a2635d5
 
 
01ff6b3
 
a2635d5
 
 
 
 
 
fd4e0e8
01ff6b3
 
fd4e0e8
2f716a3
19a72ca
01ff6b3
19a72ca
01ff6b3
fd4e0e8
4a684d4
01ff6b3
 
 
 
 
 
 
 
 
 
 
 
 
c2e2361
056c529
c2e2361
 
01ff6b3
 
 
 
 
 
 
 
 
 
 
056c529
 
 
 
 
01ff6b3
a2635d5
414670d
a2635d5
 
 
 
 
01ff6b3
056c529
 
414670d
01ff6b3
 
056c529
 
c69ccab
056c529
6d0e2c9
 
 
01ff6b3
 
056c529
 
 
 
 
71dc112
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
import os
import speech_recognition as sr


html_seeker='''<style>
    html, body {
    margin: 0;
    padding: 0;
    min-width: 900px;
}
#header {
    /*position: fixed;*/
    top: 0;
    left: 0;
    height: 50px;
    min-width: 900px;
    line-height: 50px;
    width: 100%;
    background-color: #999;
    box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5);
    font-family: Helvetica, sans-serif;
}
#header, #header a {
    color: white;
}

.home {
    margin: 0;
    font-weight: bold;
    text-transform: lowercase;
    width: 100px;
}
h4.home {
    margin: 0;
    background: #666;
    padding-left: 25px;
    padding-right: 30px;
    margin-right: 20px;
    float: left;
    text-decoration: none;
}
.home:hover a {
    background: #555;
}
#audio {
    margin-left: 10px;
    width: 500px;
    display: inline-block;
}
#transcript {
    margin: 0 15px;
    margin-bottom: 5em;
    white-space: pre-wrap;
    line-height: 2em;
    max-width: 600px;
    color: #999;
    clear: both;
	margin-top: 75px;
	/*direction: rtl;*/
}
.success {
    color: black;
	
}
.success:hover {
    text-decoration: underline;
}
.active {
    color: magenta;
	background-color: yellow;
}
#preloader {
    visibility: hidden;
}


    </style><div id="header">
      
      <audio id="audio" src="17.mp3" controls="true" ></audio>
       </div>
      </div>


    <div id="transcript" dir="auto"></div>
    <img src="" onload="
    var oldScript = document.querySelector('script#huihiuh6');
    var newScript = document.createElement('script');
    Array.from(oldScript.attributes)
      .forEach( attr => newScript.setAttribute(attr.name, attr.value) );
    newScript.appendChild(document.createTextNode(oldScript.innerHTML));
    oldScript.parentNode.replaceChild(newScript, oldScript);
    ">

<script id="huihiuh6">
	function myFunction543rr(){
	console.log('loaded00000000000000002');
	}
	var $a = document.getElementById("audio");
	$a.src=document.querySelector('audio').src;
	console.log($a);
window.onkeydown = function(ev) {
    if(ev.keyCode == 32) {
        ev.preventDefault();
        $a.pause();
    }
}
var $trans = document.getElementById("transcript");
var wds = [];
var cur_wd;

function highlight_word() {
    var t = $a.currentTime;
    // XXX: O(N); use binary search
    var hits = wds.filter(function(x) {
        return (t - x['timestamp']['0']) > 0.01 && (x['timestamp']['1'] - t) > 0.01;
    }, wds);
    var next_wd = hits[hits.length - 1];

    if(cur_wd != next_wd) {
        var active = document.querySelectorAll('.active');
        for(var i = 0; i < active.length; i++) {
            active[i].classList.remove('active');
        }
        if(next_wd && next_wd.$div) {
            next_wd.$div.classList.add('active');
            //render_phones(next_wd);
        }
    }
    cur_wd = next_wd;
    //highlight_phone(t);

    window.requestAnimationFrame(highlight_word);
}
window.requestAnimationFrame(highlight_word);

$trans.innerHTML = "Loading...";

function render(ret) {
    wds = ret['chunks'] || [];
    transcript = ret['text'];

    $trans.innerHTML = '';

    var currentOffset = 0;

    wds.forEach(function(wd) {
        
        
        var $wd = document.createElement('span');
        var txt = wd['text'];
        var $wdText = document.createTextNode(txt);
        $wd.appendChild($wdText);
        wd.$div = $wd;
        $wd.className = 'success';
        
        $wd.onclick = function() {
            console.log(wd['timestamp']['0']);
                $a.currentTime = wd['timestamp']['0'];
                $a.play();
        };
        $trans.appendChild($wd);
        $trans.appendChild(document.createTextNode(' '));
    });


}





function update() {
    if(INLINE_JSON) {
        // We want this to work from file:/// domains, so we provide a
        // mechanism for inlining the alignment data.
        render(INLINE_JSON);
    }
}

var INLINE_JSON='''
html_seeker2=''';
update();
</script>'''

# model_name = "voidful/wav2vec2-xlsr-multilingual-56"
# model0 = pipeline(task="automatic-speech-recognition",
#                  model=model_name)


# model_name = "SLPL/Sharif-wav2vec2"
# model2 = pipeline(task="automatic-speech-recognition",
#                  model=model_name)
# model_name = "ghofrani/common8"
# model1 = pipeline(task="automatic-speech-recognition",
#                  model=model_name)

import json
def predict_fa(speech,model):
    if model== "SLPL/Sharif-wav2vec2":
        text = model2(speech,return_timestamps="word" )
    elif model== "ghofrani/common8":
        text = model1(speech,return_timestamps="word" )
    elif model== "voidful/wav2vec2-xlsr-multilingual-56":
        text = model0(speech,return_timestamps="word" )
    
    return [text['text'],json.dumps(text),html_seeker+json.dumps(text)+html_seeker2]


def convert_to_wav(filename):
    filenameObj=os.path.splitext(filename)
    audio = AudioSegment.from_file(filename,format=filenameObj[1].replace(".",""))
    new_filename = filenameObj[0] + ".wav"
    while os.path.exists(new_filename):
        new_filename = os.path.splitext(new_filename)[0]+"(1)"+ ".wav"
    audio.export(new_filename, format="wav")
    print(f"Converting {filename} to {new_filename}...")
    return new_filename
def g_rec(audio_File ,language):
    r = sr.Recognizer()
    print(audio_File)
    
    #if not os.path.splitext(audio_File)[1]==".wav":
    #    audio_File=convert_to_wav(audio_File)
    hellow=sr.AudioFile(audio_File)
    with hellow as source:
        audio = r.record(source)
    try:
        s = r.recognize_google(audio,language =language)
        res= "Text: "+s
    except Exception as e:
        res= "Exception: "+str(e)
    return res
  # Export file as .wav
  
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate

#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
with gr.Blocks() as demo:
    gr.Markdown("multilingual Speech Recognition")

    # with gr.Tab("Persian models"):
    #     inputs_speech_fa =gr.Audio(sources=["upload"], type="filepath", optional=True,label="Upload your audio:")
    #     inputs_model_fa =gr.inputs.Radio(label="Language", choices=["ghofrani/common8","SLPL/Sharif-wav2vec2","voidful/wav2vec2-xlsr-multilingual-56"])
    #     output_transcribe1_fa = gr.Textbox(label="Transcribed text:")
    #     output_transcribe1_fa1 = gr.Textbox(label="Transcribed text with timestamps:")
    #     output_transcribe1_fa2 =gr.HTML(label="")
    #     transcribe_audio1_fa= gr.Button("Submit")
    with gr.Tab("google"):
        gr.Markdown("set your speech language")
        inputs_speech1 =[ 
            gr.Audio(sources=["upload"], type="filepath"),
            gr.Dropdown(choices=["af-ZA","am-ET","ar-AE","ar-BH","ar-DZ","ar-EG","ar-IL","ar-IQ","ar-JO","ar-KW","ar-LB","ar-MA","ar-MR","ar-OM","ar-PS","ar-QA","ar-SA","ar-TN","ar-YE","az-AZ","bg-BG","bn-BD","bn-IN","bs-BA","ca-ES","cs-CZ","da-DK","de-AT","de-CH","de-DE","el-GR","en-AU","en-CA","en-GB","en-GH","en-HK","en-IE","en-IN","en-KE","en-NG","en-NZ","en-PH","en-PK","en-SG","en-TZ","en-US","en-ZA","es-AR","es-BO","es-CL","es-CO","es-CR","es-DO","es-EC","es-ES","es-GT","es-HN","es-MX","es-NI","es-PA","es-PE","es-PR","es-PY","es-SV","es-US","es-UY","es-VE","et-EE","eu-ES","fa-IR","fi-FI","fil-PH","fr-BE","fr-CA","fr-CH","fr-FR","gl-ES","gu-IN","hi-IN","hr-HR","hu-HU","hy-AM","id-ID","is-IS","it-CH","it-IT","iw-IL","ja-JP","jv-ID","ka-GE","kk-KZ","km-KH","kn-IN","ko-KR","lo-LA","lt-LT","lv-LV","mk-MK","ml-IN","mn-MN","mr-IN","ms-MY","my-MM","ne-NP","nl-BE","nl-NL","no-NO","pa-Guru-IN","pl-PL","pt-BR","pt-PT","ro-RO","ru-RU","si-LK","sk-SK","sl-SI","sq-AL","sr-RS","su-ID","sv-SE","sw-KE","sw-TZ","ta-IN","ta-LK","ta-MY","ta-SG","te-IN","th-TH","tr-TR","uk-UA","ur-IN","ur-PK","uz-UZ","vi-VN","yue-Hant-HK","zh (cmn-Hans-CN)","zh-TW (cmn-Hant-TW)","zu-ZA"]
,value="fa-IR",label="language code")
        ]
        output_transcribe1 = gr.Textbox(label="output")
        transcribe_audio1_go= gr.Button("Submit")
    
    # transcribe_audio1_fa.click(fn=predict_fa,
    # inputs=[inputs_speech_fa ,inputs_model_fa ],
    # outputs=[output_transcribe1_fa ,output_transcribe1_fa1,output_transcribe1_fa2 ] )
    
    transcribe_audio1_go.click(fn=g_rec,
    inputs=inputs_speech1 ,
    outputs=output_transcribe1 )


if __name__ == "__main__":
    demo.launch()