Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,50 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load pre-trained models
|
5 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
6 |
nlp_model = pipeline("text-generation", model="sshleifer/tiny-gpt2")
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Define
|
12 |
def conversation(audio):
|
13 |
# Step 1: Convert speech to text
|
14 |
-
|
|
|
15 |
|
16 |
-
# Step 2: Generate a response
|
17 |
-
|
18 |
-
# Simple supermarket-based response; this can be expanded with more specific data
|
19 |
-
response = "Are you looking for something in particular at the supermarket?"
|
20 |
-
else:
|
21 |
-
# Default response generation (using GPT-2 model)
|
22 |
-
response = nlp_model(text, max_length=50)[0]["generated_text"]
|
23 |
|
24 |
# Step 3: Convert response text to speech using Kokoro-82M
|
25 |
-
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
# Create Gradio Interface
|
30 |
interface = gr.Interface(
|
31 |
fn=conversation,
|
32 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
33 |
outputs=[
|
34 |
gr.Textbox(label="Transcription"),
|
35 |
gr.Textbox(label="AI Response"),
|
@@ -38,4 +53,4 @@ interface = gr.Interface(
|
|
38 |
)
|
39 |
|
40 |
# Launch the app
|
41 |
-
interface.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Custom imports for Kokoro-82M
|
8 |
+
from models import build_model
|
9 |
+
from kokoro import generate
|
10 |
+
from IPython.display import Audio
|
11 |
|
12 |
# Load pre-trained models
|
13 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
14 |
nlp_model = pipeline("text-generation", model="sshleifer/tiny-gpt2")
|
15 |
|
16 |
+
# Device setup (use GPU if available, otherwise fallback to CPU)
|
17 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
+
|
19 |
+
# Load Kokoro-82M model and voicepack
|
20 |
+
def load_kokoro_model():
|
21 |
+
model = build_model('kokoro-v0_19.pth', device) # Adjust with the model path
|
22 |
+
voice_name = 'af' # Default voice is a 50-50 mix of Bella & Sarah
|
23 |
+
voicepack = torch.load(f'voices/{voice_name}.pt', weights_only=True).to(device)
|
24 |
+
return model, voicepack
|
25 |
+
|
26 |
+
# Load the Kokoro model once when the app starts
|
27 |
+
kokoro_model, kokoro_voicepack = load_kokoro_model()
|
28 |
|
29 |
+
# Define the function to handle the full workflow
|
30 |
def conversation(audio):
|
31 |
# Step 1: Convert speech to text
|
32 |
+
audio_input, _ = librosa.load(audio, sr=16000) # Ensure correct audio sample rate
|
33 |
+
text = stt_model(audio_input)["text"]
|
34 |
|
35 |
+
# Step 2: Generate a response using GPT-2
|
36 |
+
response = nlp_model(text, max_length=50)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Step 3: Convert response text to speech using Kokoro-82M
|
39 |
+
audio_response, _ = generate(kokoro_model, response, kokoro_voicepack, lang='af') # Using 'af' as language (adjust if needed)
|
40 |
|
41 |
+
# Return transcription, AI response, and generated audio
|
42 |
+
return text, response, Audio(data=audio_response, rate=24000, autoplay=True)
|
43 |
|
44 |
# Create Gradio Interface
|
45 |
interface = gr.Interface(
|
46 |
fn=conversation,
|
47 |
+
inputs=gr.Audio(source="microphone", type="filepath"), # Microphone input for live audio
|
48 |
outputs=[
|
49 |
gr.Textbox(label="Transcription"),
|
50 |
gr.Textbox(label="AI Response"),
|
|
|
53 |
)
|
54 |
|
55 |
# Launch the app
|
56 |
+
interface.launch(share=True) # Set `share=True` if you want to share the app via a link
|