Mendoza33 commited on
Commit
b34d2a4
·
verified ·
1 Parent(s): df04474

Update kokoro.py

Browse files
Files changed (1) hide show
  1. kokoro.py +15 -51
kokoro.py CHANGED
@@ -1,7 +1,15 @@
1
- import phonemizer
2
  import re
3
  import torch
4
  import numpy as np
 
 
 
 
 
 
 
 
 
5
 
6
  def split_num(num):
7
  num = num.group()
@@ -84,19 +92,19 @@ def get_vocab():
84
  return dicts
85
 
86
  VOCAB = get_vocab()
 
87
  def tokenize(ps):
88
  return [i for i in map(VOCAB.get, ps) if i is not None]
89
 
90
  phonemizers = dict(
91
- a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
92
- b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
93
  )
 
94
  def phonemize(text, lang, norm=True):
95
  if norm:
96
  text = normalize_text(text)
97
- ps = phonemizers[lang].phonemize([text])
98
- ps = ps[0] if ps else ''
99
- # https://en.wiktionary.org/wiki/kokoro#English
100
  ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
101
  ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
102
  ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
@@ -118,48 +126,4 @@ def forward(model, tokens, ref_s, speed):
118
  input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
119
  text_mask = length_to_mask(input_lengths).to(device)
120
  bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
121
- d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
122
- s = ref_s[:, 128:]
123
- d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
124
- x, _ = model.predictor.lstm(d)
125
- duration = model.predictor.duration_proj(x)
126
- duration = torch.sigmoid(duration).sum(axis=-1) / speed
127
- pred_dur = torch.round(duration).clamp(min=1).long()
128
- pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
129
- c_frame = 0
130
- for i in range(pred_aln_trg.size(0)):
131
- pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
132
- c_frame += pred_dur[0,i].item()
133
- en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
134
- F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
135
- t_en = model.text_encoder(tokens, input_lengths, text_mask)
136
- asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
137
- return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
138
-
139
- def generate(model, text, voicepack, lang='a', speed=1, ps=None):
140
- ps = ps or phonemize(text, lang)
141
- tokens = tokenize(ps)
142
- if not tokens:
143
- return None
144
- elif len(tokens) > 510:
145
- tokens = tokens[:510]
146
- print('Truncated to 510 tokens')
147
- ref_s = voicepack[len(tokens)]
148
- out = forward(model, tokens, ref_s, speed)
149
- ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
150
- return out, ps
151
-
152
- def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
153
- ps = ps or phonemize(text, lang)
154
- tokens = tokenize(ps)
155
- if not tokens:
156
- return None
157
- outs = []
158
- loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
159
- for i in range(loop_count):
160
- ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
161
- out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
162
- outs.append(out)
163
- outs = np.concatenate(outs)
164
- ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
165
- return outs, ps
 
 
1
  import re
2
  import torch
3
  import numpy as np
4
+ from gtts import gTTS # Import gTTS for text-to-speech
5
+
6
+ # Replace phonemizer backend with gTTS
7
+ def phonemize_with_gtts(text, lang='en'):
8
+ tts = gTTS(text=text, lang=lang)
9
+ # gTTS does not return phonemes, so we will simply return the text itself
10
+ # In your original code, this is where phonemizing is used
11
+ # For now, we can return the text or adapt further as needed
12
+ return text
13
 
14
  def split_num(num):
15
  num = num.group()
 
92
  return dicts
93
 
94
  VOCAB = get_vocab()
95
+
96
  def tokenize(ps):
97
  return [i for i in map(VOCAB.get, ps) if i is not None]
98
 
99
  phonemizers = dict(
100
+ a=phonemize_with_gtts, # Replace with the new phonemizer function
101
+ b=phonemize_with_gtts, # Same for other language options
102
  )
103
+
104
  def phonemize(text, lang, norm=True):
105
  if norm:
106
  text = normalize_text(text)
107
+ ps = phonemizers[lang](text)
 
 
108
  ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
109
  ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
110
  ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
 
126
  input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
127
  text_mask = length_to_mask(input_lengths).to(device)
128
  bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
129
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2