File size: 15,094 Bytes
af04de4
 
 
 
611507d
af04de4
 
 
 
 
d898977
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6674f1f
 
 
 
 
 
 
 
af04de4
6674f1f
af04de4
 
 
6674f1f
 
 
 
a215ac2
af04de4
 
 
 
 
 
 
 
6674f1f
 
 
 
592b663
 
 
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d898977
af04de4
 
 
 
 
f80172c
af04de4
 
 
 
d898977
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
592b663
 
611507d
af04de4
 
 
 
 
 
 
592b663
 
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3caf65d
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592b663
 
af04de4
 
 
 
 
 
b8758c8
e75ffde
611507d
 
 
 
 
 
af04de4
592b663
6c5232f
b8758c8
af04de4
 
 
 
 
 
 
 
f80172c
af04de4
 
 
 
6674f1f
 
 
 
 
e768ff4
6674f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af04de4
 
 
6674f1f
af04de4
 
 
 
6674f1f
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e9e537
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75ffde
 
af04de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f80172c
af04de4
 
 
 
 
 
 
 
 
 
e75ffde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from typing import Any

from nbconvert import HTMLExporter

from utils.create_info_files import create_hf_card
from utils.notebook_generator import *
from utils.components_creator import *

finetuning_notebook = "Finetuning_NoteBook"

notebook = None

css = """
.container {
    align-items: center;
    justify-content: center;
}
.center_text {
    text-align: center;
}

.a_custom {
    border-radius: var(--button-large-radius);
    padding: var(--button-large-padding);
    font-weight: var(--button-large-text-weight);
    font-size: var(--button-large-text-size);
    border: var(--button-border-width) solid var(--button-primary-border-color);
    background: var(--button-primary-background-fill);
    color: var(--button-primary-text-color);
    justify-content: center;
    align-items: center;
    transition: var(--button-transition);
    box-shadow: var(--button-shadow);
    text-align: center;
    cursor: pointer;
}

.a_custom:hover {
    border-color: var(--button-primary-border-color-hover);
    background: var(--button-primary-background-fill-hover);
    color: var(--button-primary-text-color-hover);
}

.a_custom a {
    text-decoration: none;
    color: white;
    display: block;
}

.dashed_row {
    border: 2px dashed #60a5fa;
}
"""


def centered_column():
    return gr.Column(elem_classes=["container"])


def dashed_row():
    return gr.Row(elem_classes=["dashed_row"])


def should_login_to_hf_model(model_id: str):
    return model_id == gemma.name or model_id == llama.name


def change_model_selection(model_id):
    if model_id == gemma.name:
        gr.Warning("""
        Access Gemma:
        
        To load Gemma from Hugging Face, you’re required to review and agree to Google’s usage license.
        """)
    if model_id == llama.name:
        gr.Warning("""
        Access Llama 2:
        
        To load Llama 2 from Hugging Face, you’re required to review and agree to Meta’s usage license.
        """)

    for m in models:
        if m.name == model_id:
            return gr.Dropdown(choices=m.versions, interactive=True,
                               visible=True, info=f"Select the version of the model {m.name} you wish to use.")
    return None


def check_valid_input(value):
    if isinstance(value, str):
        return value and value.strip()
    if isinstance(value, list):
        return len(value) > 0
    return not None


def get_dataset(dataset_path):
    for d in ft_datasets:
        if d.path == dataset_path:
            return d
    return None


def get_value(components: dict[Component, Any], elem_id: str) -> Any:
    for component, val in components.items():
        if component.elem_id == elem_id:
            return val
    return None


def preview_notebook():
    html_exporter = HTMLExporter()
    global notebook
    (body, resources) = html_exporter.from_notebook_node(notebook)

    html_path = f"{finetuning_notebook}.html"
    with open(html_path, 'w') as f:
        f.write(body)

    return f'<iframe src="file={html_path}" width="100%" height="250px"></iframe>'


def generate_code(components: dict[Component, Any]):
    global notebook
    notebook = nbf.v4.new_notebook()
    create_install_libraries_cells(notebook['cells'])
    flash_attention_value = get_value(components, FLASH_ATTENTION_ID)
    if flash_attention_value:
        create_install_flash_attention(notebook['cells'])

    dataset_value = get_value(components, DATASET_SELECTION_ID)
    seed_value = get_value(components, DATASET_SHUFFLING_SEED)
    if not check_valid_input(dataset_value):
        gr.Warning("No dataset is selected")
    else:
        create_datasets_cells(notebook['cells'], get_dataset(dataset_value), seed_value)

    model_value = get_value(components, MODEL_SELECTION_ID)
    should_login = should_login_to_hf_model(model_value)

    version_value = ""
    if not check_valid_input(model_value):
        gr.Warning("No model is selected!")
    else:
        version_value = get_value(components, MODEL_VERSION_SELECTION_ID)
        if not check_valid_input(version_value):
            gr.Warning("No version of the model is selected")
        else:
            if should_login:
                create_login_hf_cells(notebook['cells'], should_login=True, model_name=model_value)

            load_in_4bit = get_value(components, LOAD_IN_4_BIT_ID)
            bnb_4bit_use_double_quant = get_value(components, BNB_4BIT_USE_DOUBLE_QUANT)
            bnb_4bit_quant_type = get_value(components, BNB_4BIT_QUANT_TYPE)
            bnb_4bit_compute_dtype = get_value(components, BNB_4BIT_COMPUTE_DTYPE)
            pad_side = get_value(components, PAD_SIDE_ID)
            pad_value = get_value(components, PAD_VALUE_ID)
            create_model_cells(notebook['cells'], model_id=model_value, version=version_value,
                               flash_attention=flash_attention_value, pad_value=pad_value,
                               pad_side=pad_side, load_in_4bit=load_in_4bit,
                               bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
                               bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=bnb_4bit_compute_dtype)

    r_value = get_value(components, LORA_R_ID)
    alpha_value = get_value(components, LORA_ALPHA_ID)
    dropout_value = get_value(components, LORA_DROPOUT_ID)
    bias_value = get_value(components, LORA_BIAS_ID)
    create_lora_config_cells(notebook['cells'], r_value, alpha_value, dropout_value, bias_value)

    epochs = get_value(components, NUM_TRAIN_EPOCHS_ID)
    max_steps = get_value(components, MAX_STEPS_ID)
    logging_steps = get_value(components, LOGGING_STEPS_ID)
    per_device_train_batch_size = get_value(components, PER_DEVICE_TRAIN_BATCH_SIZE)
    save_strategy = get_value(components, SAVE_STRATEGY_ID)
    gradient_accumulation_steps = get_value(components, GRADIENT_ACCUMULATION_STEPS_ID)
    gradient_checkpointing = get_value(components, GRADIENT_CHECKPOINTING_ID)
    learning_rate = get_value(components, LEARNING_RATE_ID)
    max_grad_norm = get_value(components, MAX_GRAD_NORM_ID)
    warmup_ratio = get_value(components, WARMUP_RATIO_ID)
    lr_scheduler_type = get_value(components, LR_SCHEDULER_TYPE_ID)
    output_dir = get_value(components, OUTPUT_DIR_ID)

    report_to = get_value(components, REPORT_TO_ID)

    if not check_valid_input(output_dir):
        gr.Warning("No output_dir is given")

    create_training_args_cells(notebook['cells'], epochs=epochs, max_steps=max_steps, logging_steps=logging_steps,
                               per_device_train_batch_size=per_device_train_batch_size, save_strategy=save_strategy,
                               gradient_accumulation_steps=gradient_accumulation_steps,
                               gradient_checkpointing=gradient_checkpointing, learning_rate=learning_rate,
                               max_grad_norm=max_grad_norm, warmup_ratio=warmup_ratio,
                               lr_scheduler_type=lr_scheduler_type, output_dir=output_dir, report_to=report_to,
                               seed=seed_value)

    max_seq_length = get_value(components, MAX_SEQ_LENGTH_ID)
    packing = get_value(components, PACKING_ID)
    create_sft_trainer_cells(notebook['cells'], max_seq_length, packing)

    push_to_hub = get_value(components, PUSH_TO_HUB_ID)

    create_start_training_cells(notebook['cells'], epochs, max_steps, push_to_hub, output_dir)

    create_free_gpu_cells(notebook['cells'])

    create_merge_lora_cells(notebook['cells'], output_dir)

    merge_model_cells(notebook['cells'], output_dir)

    create_readme = get_value(components, README_ID)
    if create_readme:
        create_hf_card(notebook['cells'], name=output_dir, base_model_name=model_value,
                       base_model_version=version_value,
                       dataset_name=dataset_value, output_dir=output_dir, report_to=report_to)

    if push_to_hub:
        if not should_login:
            create_login_hf_cells(notebook['cells'], output_dir=output_dir)
        push_to_hub_cells(notebook['cells'], output_dir)

    file_name = f"{finetuning_notebook}.ipynb"

    with open(file_name, 'w') as f:
        nbf.write(notebook, f)

    return gr.Button(
        visible=True), f'''<div class="a_custom"><a href="file={file_name}" download={file_name}>
        💾️ Download {finetuning_notebook}.ipynb</a> </div> ''', "<div></div>"


with gr.Blocks(css=css, theme=gr.themes.Soft(text_size='lg', font=["monospace"],
                                             primary_hue=gr.themes.colors.blue)) as demo:
    gr.Label("UI-Guided LLM Fine-Tuning Jupyter Notebook Generator 🛠️🧠", show_label=False)

    gr.Markdown('''
            This space generates a **Jupyter Notebook file (.ipynb)** 📔⚙️ that guides you through the 
            entire process of **supervised fine-tuning** of a raw Large Language Model (**LLM**) 🧠 on a chosen dataset in 
            the **Conversational format**. The process is facilitated by an intuitive **User Interface (UI)** 👆💻 **:**
            ''', elem_classes=["center_text"])
    with dashed_row():
        with centered_column():
            with gr.Accordion("1. No Coding Required", open=False):
                gr.Markdown("The UI guides you through the entire process, eliminating the need for manual coding.")
            with gr.Accordion("2. Customizable Parameters", open=False):
                gr.Markdown(
                    "You can customize the most commonly used parameters for supervised fine-tuning to suit your needs.")
        with centered_column():
            with gr.Accordion("3. Comprehensive Notebook", open=False):
                gr.Markdown("The generated .ipynb contains all steps, from installing libraries and writing a "
                            "README.md, "
                            "to pushing the final model to the Hugging Face Hub.")
            with gr.Accordion("4. Preview Before Download", open=False):
                gr.Markdown("You can preview the generated .ipynb before downloading it to ensure it "
                            "meets "
                            "your requirements.")
        with centered_column():
            with gr.Accordion("5. User-Friendly", open=False):
                gr.Markdown("The UI is designed to be easy to use and understand, making the fine-tuning process "
                            "accessible "
                            "to everyone.")
            with gr.Accordion("6. Open-Source", open=False):
                gr.Markdown(
                    "This space is open source, so you can collaborate to improve it and make it more powerful.")

    all_components: Set[Component] = set()

    gr.HTML("<h2 style='text-align: center;'>Model 🧠</h2>")
    with gr.Row():
        model_selection = gr.Dropdown(
            [model.name for model in models],
            elem_id=MODEL_SELECTION_ID,
            label="Select a raw LLM",
            info="Select a raw Large Language Model (LLM) to fine-tune."
        )
        version_selection = gr.Dropdown(
            choices=[], label="Select a Model Version 🔄", info="", visible=False, elem_id=MODEL_VERSION_SELECTION_ID
        )
        all_components.add(model_selection)
        all_components.add(version_selection)

    gr.HTML("<h2 style='text-align: center;'>Dataset 📊</h2>")
    with gr.Row():
        all_components.update(add_dataset_components())

    gr.HTML("<h2 style='text-align: center;'>⚡ Flash Attention ⚡</h2>")
    with gr.Row():
        flash_attention = gr.Checkbox(value=True, label="Enable Flash Attention", interactive=True,
                                      elem_id=FLASH_ATTENTION_ID,
                                      info="Flash Attention is a technique that reduces the memory and runtime costs "
                                           "associated with "
                                           "the attention layer in a model. For more details, please refer to the "
                                           "Flash Attention "
                                           "repository on GitHub.")
        all_components.add(flash_attention)

    gr.HTML("<h2 style='text-align: center;'>Quantization</h2>")
    with gr.Row():
        with centered_column():
            all_components.update(add_quantization_components())
        with centered_column():
            all_components.update(add_quantization_components1())

    gr.HTML("<h2 style='text-align: center;'>Tokenizer Configuration</h2>")
    with gr.Row():
        all_components.update(add_pad_tokens())

    gr.HTML("<h2 style='text-align: center;'>LoRA Configuration</h2>")
    with gr.Row():
        with centered_column():
            all_components.update(add_lora_components1())
        with centered_column():
            all_components.update(add_lora_components())

    gr.HTML("<h2 style='text-align: center;'>⚙️ Training Arguments ⚙️</h2>")
    with gr.Row():
        with centered_column():
            all_components.update(add_training_args_1())
            all_components.update(add_training_args_1_bis())
        with centered_column():
            all_components.update(add_training_args_3())

    gr.HTML("<h2 style='text-align: center;'>Optimizer Arguments</h2>")
    with gr.Row():
        with centered_column():
            optimizer1 = add_optimizer1()
            all_components.update(optimizer1)

        with centered_column():
            optimizer = add_optimizer()
            all_components.update(optimizer)

    gr.HTML("<h2 style='text-align: center;'>Outputs</h2>")
    with gr.Row():
        with centered_column():
            output_dir_cmp, push_to_hub_cmp = add_outputs()
            all_components.update({output_dir_cmp, push_to_hub_cmp})
        with centered_column():
            all_components.update(add_outputs1())

    gr.HTML("<h2 style='text-align: center;'>SFTTrainer Arguments</h2>")
    with gr.Row():
        sft_args = add_sft_trainer_args()
        all_components.update(sft_args)

    with gr.Row():
        iframe = gr.HTML(show_label=False, visible=True)

    with gr.Row():
        greet_btn = gr.Button("Generate 🛠️", variant="primary")

    with gr.Row():
        preview_btn = gr.Button(f"👀 Preview {finetuning_notebook}.ipynb", variant="primary", visible=False)
        download_btn = gr.HTML(show_label=False, visible=True)

    greet_btn.click(fn=generate_code, inputs=all_components, outputs=[preview_btn, download_btn, iframe])

    preview_btn.click(fn=preview_notebook, inputs=None, outputs=iframe)

    model_selection.change(
        fn=change_model_selection,
        inputs=model_selection,
        outputs=version_selection
    )

demo.launch(allowed_paths=["/"])

# Upload metrics to the hub....
"""
import os
from huggingface_hub import Repository

# Create a repository object
repo = Repository("Menouar/ft-phi-1")

# Push the runs directory
os.system(f"git -C {repo.local_dir} add output_dir/runs")
repo.git_commit("Adding TensorBoard logs")
repo.push_to_hub(commit_message="Adding TensorBoard logs")

"""