Spaces:
Runtime error
Runtime error
File size: 15,094 Bytes
af04de4 611507d af04de4 d898977 af04de4 6674f1f af04de4 6674f1f af04de4 6674f1f a215ac2 af04de4 6674f1f 592b663 af04de4 d898977 af04de4 f80172c af04de4 d898977 af04de4 592b663 611507d af04de4 592b663 af04de4 3caf65d af04de4 592b663 af04de4 b8758c8 e75ffde 611507d af04de4 592b663 6c5232f b8758c8 af04de4 f80172c af04de4 6674f1f e768ff4 6674f1f af04de4 6674f1f af04de4 6674f1f af04de4 0e9e537 af04de4 e75ffde af04de4 f80172c af04de4 e75ffde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from typing import Any
from nbconvert import HTMLExporter
from utils.create_info_files import create_hf_card
from utils.notebook_generator import *
from utils.components_creator import *
finetuning_notebook = "Finetuning_NoteBook"
notebook = None
css = """
.container {
align-items: center;
justify-content: center;
}
.center_text {
text-align: center;
}
.a_custom {
border-radius: var(--button-large-radius);
padding: var(--button-large-padding);
font-weight: var(--button-large-text-weight);
font-size: var(--button-large-text-size);
border: var(--button-border-width) solid var(--button-primary-border-color);
background: var(--button-primary-background-fill);
color: var(--button-primary-text-color);
justify-content: center;
align-items: center;
transition: var(--button-transition);
box-shadow: var(--button-shadow);
text-align: center;
cursor: pointer;
}
.a_custom:hover {
border-color: var(--button-primary-border-color-hover);
background: var(--button-primary-background-fill-hover);
color: var(--button-primary-text-color-hover);
}
.a_custom a {
text-decoration: none;
color: white;
display: block;
}
.dashed_row {
border: 2px dashed #60a5fa;
}
"""
def centered_column():
return gr.Column(elem_classes=["container"])
def dashed_row():
return gr.Row(elem_classes=["dashed_row"])
def should_login_to_hf_model(model_id: str):
return model_id == gemma.name or model_id == llama.name
def change_model_selection(model_id):
if model_id == gemma.name:
gr.Warning("""
Access Gemma:
To load Gemma from Hugging Face, you’re required to review and agree to Google’s usage license.
""")
if model_id == llama.name:
gr.Warning("""
Access Llama 2:
To load Llama 2 from Hugging Face, you’re required to review and agree to Meta’s usage license.
""")
for m in models:
if m.name == model_id:
return gr.Dropdown(choices=m.versions, interactive=True,
visible=True, info=f"Select the version of the model {m.name} you wish to use.")
return None
def check_valid_input(value):
if isinstance(value, str):
return value and value.strip()
if isinstance(value, list):
return len(value) > 0
return not None
def get_dataset(dataset_path):
for d in ft_datasets:
if d.path == dataset_path:
return d
return None
def get_value(components: dict[Component, Any], elem_id: str) -> Any:
for component, val in components.items():
if component.elem_id == elem_id:
return val
return None
def preview_notebook():
html_exporter = HTMLExporter()
global notebook
(body, resources) = html_exporter.from_notebook_node(notebook)
html_path = f"{finetuning_notebook}.html"
with open(html_path, 'w') as f:
f.write(body)
return f'<iframe src="file={html_path}" width="100%" height="250px"></iframe>'
def generate_code(components: dict[Component, Any]):
global notebook
notebook = nbf.v4.new_notebook()
create_install_libraries_cells(notebook['cells'])
flash_attention_value = get_value(components, FLASH_ATTENTION_ID)
if flash_attention_value:
create_install_flash_attention(notebook['cells'])
dataset_value = get_value(components, DATASET_SELECTION_ID)
seed_value = get_value(components, DATASET_SHUFFLING_SEED)
if not check_valid_input(dataset_value):
gr.Warning("No dataset is selected")
else:
create_datasets_cells(notebook['cells'], get_dataset(dataset_value), seed_value)
model_value = get_value(components, MODEL_SELECTION_ID)
should_login = should_login_to_hf_model(model_value)
version_value = ""
if not check_valid_input(model_value):
gr.Warning("No model is selected!")
else:
version_value = get_value(components, MODEL_VERSION_SELECTION_ID)
if not check_valid_input(version_value):
gr.Warning("No version of the model is selected")
else:
if should_login:
create_login_hf_cells(notebook['cells'], should_login=True, model_name=model_value)
load_in_4bit = get_value(components, LOAD_IN_4_BIT_ID)
bnb_4bit_use_double_quant = get_value(components, BNB_4BIT_USE_DOUBLE_QUANT)
bnb_4bit_quant_type = get_value(components, BNB_4BIT_QUANT_TYPE)
bnb_4bit_compute_dtype = get_value(components, BNB_4BIT_COMPUTE_DTYPE)
pad_side = get_value(components, PAD_SIDE_ID)
pad_value = get_value(components, PAD_VALUE_ID)
create_model_cells(notebook['cells'], model_id=model_value, version=version_value,
flash_attention=flash_attention_value, pad_value=pad_value,
pad_side=pad_side, load_in_4bit=load_in_4bit,
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=bnb_4bit_compute_dtype)
r_value = get_value(components, LORA_R_ID)
alpha_value = get_value(components, LORA_ALPHA_ID)
dropout_value = get_value(components, LORA_DROPOUT_ID)
bias_value = get_value(components, LORA_BIAS_ID)
create_lora_config_cells(notebook['cells'], r_value, alpha_value, dropout_value, bias_value)
epochs = get_value(components, NUM_TRAIN_EPOCHS_ID)
max_steps = get_value(components, MAX_STEPS_ID)
logging_steps = get_value(components, LOGGING_STEPS_ID)
per_device_train_batch_size = get_value(components, PER_DEVICE_TRAIN_BATCH_SIZE)
save_strategy = get_value(components, SAVE_STRATEGY_ID)
gradient_accumulation_steps = get_value(components, GRADIENT_ACCUMULATION_STEPS_ID)
gradient_checkpointing = get_value(components, GRADIENT_CHECKPOINTING_ID)
learning_rate = get_value(components, LEARNING_RATE_ID)
max_grad_norm = get_value(components, MAX_GRAD_NORM_ID)
warmup_ratio = get_value(components, WARMUP_RATIO_ID)
lr_scheduler_type = get_value(components, LR_SCHEDULER_TYPE_ID)
output_dir = get_value(components, OUTPUT_DIR_ID)
report_to = get_value(components, REPORT_TO_ID)
if not check_valid_input(output_dir):
gr.Warning("No output_dir is given")
create_training_args_cells(notebook['cells'], epochs=epochs, max_steps=max_steps, logging_steps=logging_steps,
per_device_train_batch_size=per_device_train_batch_size, save_strategy=save_strategy,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=gradient_checkpointing, learning_rate=learning_rate,
max_grad_norm=max_grad_norm, warmup_ratio=warmup_ratio,
lr_scheduler_type=lr_scheduler_type, output_dir=output_dir, report_to=report_to,
seed=seed_value)
max_seq_length = get_value(components, MAX_SEQ_LENGTH_ID)
packing = get_value(components, PACKING_ID)
create_sft_trainer_cells(notebook['cells'], max_seq_length, packing)
push_to_hub = get_value(components, PUSH_TO_HUB_ID)
create_start_training_cells(notebook['cells'], epochs, max_steps, push_to_hub, output_dir)
create_free_gpu_cells(notebook['cells'])
create_merge_lora_cells(notebook['cells'], output_dir)
merge_model_cells(notebook['cells'], output_dir)
create_readme = get_value(components, README_ID)
if create_readme:
create_hf_card(notebook['cells'], name=output_dir, base_model_name=model_value,
base_model_version=version_value,
dataset_name=dataset_value, output_dir=output_dir, report_to=report_to)
if push_to_hub:
if not should_login:
create_login_hf_cells(notebook['cells'], output_dir=output_dir)
push_to_hub_cells(notebook['cells'], output_dir)
file_name = f"{finetuning_notebook}.ipynb"
with open(file_name, 'w') as f:
nbf.write(notebook, f)
return gr.Button(
visible=True), f'''<div class="a_custom"><a href="file={file_name}" download={file_name}>
💾️ Download {finetuning_notebook}.ipynb</a> </div> ''', "<div></div>"
with gr.Blocks(css=css, theme=gr.themes.Soft(text_size='lg', font=["monospace"],
primary_hue=gr.themes.colors.blue)) as demo:
gr.Label("UI-Guided LLM Fine-Tuning Jupyter Notebook Generator 🛠️🧠", show_label=False)
gr.Markdown('''
This space generates a **Jupyter Notebook file (.ipynb)** 📔⚙️ that guides you through the
entire process of **supervised fine-tuning** of a raw Large Language Model (**LLM**) 🧠 on a chosen dataset in
the **Conversational format**. The process is facilitated by an intuitive **User Interface (UI)** 👆💻 **:**
''', elem_classes=["center_text"])
with dashed_row():
with centered_column():
with gr.Accordion("1. No Coding Required", open=False):
gr.Markdown("The UI guides you through the entire process, eliminating the need for manual coding.")
with gr.Accordion("2. Customizable Parameters", open=False):
gr.Markdown(
"You can customize the most commonly used parameters for supervised fine-tuning to suit your needs.")
with centered_column():
with gr.Accordion("3. Comprehensive Notebook", open=False):
gr.Markdown("The generated .ipynb contains all steps, from installing libraries and writing a "
"README.md, "
"to pushing the final model to the Hugging Face Hub.")
with gr.Accordion("4. Preview Before Download", open=False):
gr.Markdown("You can preview the generated .ipynb before downloading it to ensure it "
"meets "
"your requirements.")
with centered_column():
with gr.Accordion("5. User-Friendly", open=False):
gr.Markdown("The UI is designed to be easy to use and understand, making the fine-tuning process "
"accessible "
"to everyone.")
with gr.Accordion("6. Open-Source", open=False):
gr.Markdown(
"This space is open source, so you can collaborate to improve it and make it more powerful.")
all_components: Set[Component] = set()
gr.HTML("<h2 style='text-align: center;'>Model 🧠</h2>")
with gr.Row():
model_selection = gr.Dropdown(
[model.name for model in models],
elem_id=MODEL_SELECTION_ID,
label="Select a raw LLM",
info="Select a raw Large Language Model (LLM) to fine-tune."
)
version_selection = gr.Dropdown(
choices=[], label="Select a Model Version 🔄", info="", visible=False, elem_id=MODEL_VERSION_SELECTION_ID
)
all_components.add(model_selection)
all_components.add(version_selection)
gr.HTML("<h2 style='text-align: center;'>Dataset 📊</h2>")
with gr.Row():
all_components.update(add_dataset_components())
gr.HTML("<h2 style='text-align: center;'>⚡ Flash Attention ⚡</h2>")
with gr.Row():
flash_attention = gr.Checkbox(value=True, label="Enable Flash Attention", interactive=True,
elem_id=FLASH_ATTENTION_ID,
info="Flash Attention is a technique that reduces the memory and runtime costs "
"associated with "
"the attention layer in a model. For more details, please refer to the "
"Flash Attention "
"repository on GitHub.")
all_components.add(flash_attention)
gr.HTML("<h2 style='text-align: center;'>Quantization</h2>")
with gr.Row():
with centered_column():
all_components.update(add_quantization_components())
with centered_column():
all_components.update(add_quantization_components1())
gr.HTML("<h2 style='text-align: center;'>Tokenizer Configuration</h2>")
with gr.Row():
all_components.update(add_pad_tokens())
gr.HTML("<h2 style='text-align: center;'>LoRA Configuration</h2>")
with gr.Row():
with centered_column():
all_components.update(add_lora_components1())
with centered_column():
all_components.update(add_lora_components())
gr.HTML("<h2 style='text-align: center;'>⚙️ Training Arguments ⚙️</h2>")
with gr.Row():
with centered_column():
all_components.update(add_training_args_1())
all_components.update(add_training_args_1_bis())
with centered_column():
all_components.update(add_training_args_3())
gr.HTML("<h2 style='text-align: center;'>Optimizer Arguments</h2>")
with gr.Row():
with centered_column():
optimizer1 = add_optimizer1()
all_components.update(optimizer1)
with centered_column():
optimizer = add_optimizer()
all_components.update(optimizer)
gr.HTML("<h2 style='text-align: center;'>Outputs</h2>")
with gr.Row():
with centered_column():
output_dir_cmp, push_to_hub_cmp = add_outputs()
all_components.update({output_dir_cmp, push_to_hub_cmp})
with centered_column():
all_components.update(add_outputs1())
gr.HTML("<h2 style='text-align: center;'>SFTTrainer Arguments</h2>")
with gr.Row():
sft_args = add_sft_trainer_args()
all_components.update(sft_args)
with gr.Row():
iframe = gr.HTML(show_label=False, visible=True)
with gr.Row():
greet_btn = gr.Button("Generate 🛠️", variant="primary")
with gr.Row():
preview_btn = gr.Button(f"👀 Preview {finetuning_notebook}.ipynb", variant="primary", visible=False)
download_btn = gr.HTML(show_label=False, visible=True)
greet_btn.click(fn=generate_code, inputs=all_components, outputs=[preview_btn, download_btn, iframe])
preview_btn.click(fn=preview_notebook, inputs=None, outputs=iframe)
model_selection.change(
fn=change_model_selection,
inputs=model_selection,
outputs=version_selection
)
demo.launch(allowed_paths=["/"])
# Upload metrics to the hub....
"""
import os
from huggingface_hub import Repository
# Create a repository object
repo = Repository("Menouar/ft-phi-1")
# Push the runs directory
os.system(f"git -C {repo.local_dir} add output_dir/runs")
repo.git_commit("Adding TensorBoard logs")
repo.push_to_hub(commit_message="Adding TensorBoard logs")
"""
|