Spaces:
Sleeping
Sleeping
File size: 7,174 Bytes
1cc6224 5afe102 ff9d83f 1cc6224 094b306 1cc6224 094b306 ff9d83f 1cc6224 3c26932 1cc6224 ff9d83f 1cc6224 3bc7666 f26ce32 2d87391 cfa28fc 2f9949d 831a207 2d87391 f26ce32 1cc6224 5a2adf0 1cc6224 1cd68e2 1cc6224 3c26932 1cc6224 bb2c79a 1cc6224 635d2d2 1cc6224 0750570 1cc6224 a9fe725 090b36e cac77ba 1cc6224 72070c7 094b306 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a mental music chatbot specialized in providing a curated music playlist according to a user's input."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing music recommendations.
"""
try:
user_message = f"Here's the information on music recommendations: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=300,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def get_youtube_playlist(question):
"""
Check if the question contains a keyword and return the corresponding Youtube playlist link.
"""
keyword_links = {
"sad": "Here's a Youtube playlist for when you're feeling sad: https://www.youtube.com/playlist?list=PLPE5bssIbSTm3odLzXrlfCXnmpll8pqBu",
"hype": "Get hyped with this energetic Youtube playlist this upbeat Youtube playlist for when you're feeling happy: https://www.youtube.com/playlist?list=PLPE5bssIbSTnsN_-gd3-2sgHxm7i4CSSS",
"mad":"Enjoy this energtic playlist when you are pressed:https://www.youtube.com/playlist?list=PLPE5bssIbSTnwU9lG7jdnuqzoKUKFbUGb",
"chill": "Here is a playlist for a chill vibe: https://www.youtube.com/playlist?list=PLPE5bssIbSTkjkb4FfYcaI3tVtfE3IrAx",
"delulu": "Here is a playlist for when you are yearning for someone or dealing with romance: https://www.youtube.com/playlist?list=PLPE5bssIbSTlfj8IbqgD2SRVh83Hs1TZG",
"it_girl": "Here is a playlist for when you are feeling your best and are confident:https://www.youtube.com/playlist?list=PLPE5bssIbSTlPeSO5BbhKiQZ1RXVCz-id"
}
for keyword, link in keyword_links.items():
if keyword in question.lower():
return link
# If no keyword matches, return None or handle accordingly
return None
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
youtube_playlist = get_youtube_playlist(question)
if youtube_playlist:
return f"Here is a link to the youtube playlist for more recs! Just copy this link: {youtube_playlist}"
if question == "":
return "Welcome to Mental Music Bot! Ask me anything about music recommendations!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶 Welcome to Mental Music Bot!
## Your AI-driven friend for all music recommendations based off your emotions. Created by Sarem, Davina, and Brea of the 2024 Kode With Klossy DC Camp.
"""
topics = """
### Feel Free to ask me anything from the topics below!
- music recommendations for when you're feeling sad
- music recommendations for when you're feeling happy
- music recommendations for when you're feeling confident
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
gr.Image("https://huggingface.co/spaces/MentalMusicBot-1/MentalMusicBot/resolve/main/BDS%20mental%20music%20bot%20-%20KWK%20Pitch%20Party.jpg", show_label = False, show_share_button = False, show_download_button = False)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="How are you feeling today?")
answer = gr.Textbox(label="Mental Music Bot Response", placeholder="Mental Music Bot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|