File size: 7,174 Bytes
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
5afe102
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094b306
1cc6224
 
094b306
ff9d83f
 
 
 
1cc6224
 
 
3c26932
1cc6224
 
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
3bc7666
f26ce32
 
 
 
2d87391
 
cfa28fc
2f9949d
831a207
2d87391
f26ce32
 
 
 
 
 
 
 
1cc6224
 
 
 
5a2adf0
 
 
 
 
1cc6224
1cd68e2
1cc6224
 
 
 
 
 
3c26932
1cc6224
 
bb2c79a
1cc6224
635d2d2
1cc6224
 
 
 
0750570
 
 
1cc6224
 
 
a9fe725
090b36e
cac77ba
1cc6224
 
 
 
 
 
72070c7
094b306
1cc6224
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a mental music chatbot specialized in providing a curated music playlist according to a user's input."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing music recommendations.
    """
    try:
        user_message = f"Here's the information on music recommendations: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=300,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def get_youtube_playlist(question):
    """
    Check if the question contains a keyword and return the corresponding Youtube playlist link.
    """
    keyword_links = {
        "sad": "Here's a Youtube playlist for when you're feeling sad: https://www.youtube.com/playlist?list=PLPE5bssIbSTm3odLzXrlfCXnmpll8pqBu",
        "hype": "Get hyped with this energetic Youtube playlist this upbeat Youtube playlist for when you're feeling happy: https://www.youtube.com/playlist?list=PLPE5bssIbSTnsN_-gd3-2sgHxm7i4CSSS",
        "mad":"Enjoy this energtic playlist when you are pressed:https://www.youtube.com/playlist?list=PLPE5bssIbSTnwU9lG7jdnuqzoKUKFbUGb",
        "chill": "Here is a playlist for a chill vibe: https://www.youtube.com/playlist?list=PLPE5bssIbSTkjkb4FfYcaI3tVtfE3IrAx", 
        "delulu": "Here is a playlist for when you are yearning for someone or dealing with romance: https://www.youtube.com/playlist?list=PLPE5bssIbSTlfj8IbqgD2SRVh83Hs1TZG", 
        "it_girl": "Here is a playlist for when you are feeling your best and are confident:https://www.youtube.com/playlist?list=PLPE5bssIbSTlPeSO5BbhKiQZ1RXVCz-id"
    }
    
    for keyword, link in keyword_links.items():
        if keyword in question.lower():
            return link
    
    # If no keyword matches, return None or handle accordingly
    return None
def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    
    youtube_playlist = get_youtube_playlist(question)
    if youtube_playlist:
        return f"Here is a link to the youtube playlist for more recs! Just copy this link: {youtube_playlist}"
        
    if question == "":
        return "Welcome to Mental Music Bot! Ask me anything about music recommendations!"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response


# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🎶 Welcome to Mental Music Bot!

## Your AI-driven friend for all music recommendations based off your emotions. Created by Sarem, Davina, and Brea of the 2024 Kode With Klossy DC Camp. 
"""

topics = """
### Feel Free to ask me anything from the topics below!
- music recommendations for when you're feeling sad
- music recommendations for when you're feeling happy
- music recommendations for when you're feeling confident 
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
    gr.Image("https://huggingface.co/spaces/MentalMusicBot-1/MentalMusicBot/resolve/main/BDS%20mental%20music%20bot%20-%20KWK%20Pitch%20Party.jpg", show_label = False, show_share_button = False, show_download_button = False)

    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="How are you feeling today?")
            answer = gr.Textbox(label="Mental Music Bot Response", placeholder="Mental Music Bot will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)