Menyu commited on
Commit
241b613
1 Parent(s): 5a4a980

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -147
app.py CHANGED
@@ -1,154 +1,92 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "anon4ik/noobaiXLNAIXL_epsilonPred05Version_diffusers" # Replace to the model you would like to use
11
-
12
- pipe = StableDiffusionXLPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16)
13
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
14
- pipe.scheduler.register_to_config(
15
- prediction_type="v_prediction",
16
- rescale_betas_zero_snr=True,
17
- )
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
  }
65
- """
66
 
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
4
+ from huggingface_hub import hf_hub_download
5
+ from safetensors.torch import load_file
6
+ import spaces
7
+ from PIL import Image
8
+
9
+ SAFETY_CHECKER = False
10
+
11
+ # Constants
12
+ base = "stabilityai/stable-diffusion-xl-base-1.0"
13
+ repo = "advokat/noobaiXLNAIXL_epsilonPred075"
14
+ checkpoints = {
15
+ "1-Step" : ["noobaiXLNAIXL_epsilonPred075.safetensors", 1],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
17
+ loaded = None
18
 
19
+ # Ensure model and scheduler are initialized in GPU-enabled function
20
+ if torch.cuda.is_available():
21
+ pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
22
 
23
+ if SAFETY_CHECKER:
24
+ from safety_checker import StableDiffusionSafetyChecker
25
+ from transformers import CLIPFeatureExtractor
26
+
27
+ safety_checker = StableDiffusionSafetyChecker.from_pretrained(
28
+ "CompVis/stable-diffusion-safety-checker"
29
+ ).to("cuda")
30
+ feature_extractor = CLIPFeatureExtractor.from_pretrained(
31
+ "openai/clip-vit-base-patch32"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
34
+ def check_nsfw_images(
35
+ images: list[Image.Image],
36
+ ) -> tuple[list[Image.Image], list[bool]]:
37
+ safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
38
+ has_nsfw_concepts = safety_checker(
39
+ images=[images],
40
+ clip_input=safety_checker_input.pixel_values.to("cuda")
41
+ )
42
+
43
+ return images, has_nsfw_concepts
44
+
45
+ # Function
46
+ @spaces.GPU(enable_queue=True)
47
+ def generate_image(prompt, ckpt):
48
+ global loaded
49
+ print(prompt, ckpt)
50
+
51
+ checkpoint = checkpoints[ckpt][0]
52
+ num_inference_steps = checkpoints[ckpt][1]
53
+
54
+ if loaded != num_inference_steps:
55
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
56
+ pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
57
+ loaded = num_inference_steps
58
+
59
+ results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
60
+
61
+ if SAFETY_CHECKER:
62
+ images, has_nsfw_concepts = check_nsfw_images(results.images)
63
+ if any(has_nsfw_concepts):
64
+ gr.Warning("NSFW content detected.")
65
+ return Image.new("RGB", (512, 512))
66
+ return images[0]
67
+ return results.images[0]
68
+
69
+
70
+
71
+ # Gradio Interface
72
+
73
+ with gr.Blocks(css="style.css") as demo:
74
+ gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
75
+ gr.HTML("<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>")
76
+ with gr.Group():
77
+ with gr.Row():
78
+ prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
79
+ ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
80
+ submit = gr.Button(scale=1, variant='primary')
81
+ img = gr.Image(label='SDXL-Lightning Generated Image')
82
+
83
+ prompt.submit(fn=generate_image,
84
+ inputs=[prompt, ckpt],
85
+ outputs=img,
86
+ )
87
+ submit.click(fn=generate_image,
88
+ inputs=[prompt, ckpt],
89
+ outputs=img,
90
+ )
91
+
92
+ demo.queue().launch()