Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,154 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
import spaces
|
4 |
-
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
from safetensors.torch import load_file
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
SAFETY_CHECKER = False
|
10 |
-
|
11 |
-
# Constants
|
12 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
-
repo = "advokat/noobaiXLNAIXL_epsilonPred075"
|
14 |
-
checkpoints = {
|
15 |
-
"1-Step" : ["noobaiXLNAIXL_epsilonPred075.safetensors", 1],
|
16 |
-
}
|
17 |
-
loaded = None
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
) -> tuple[list[Image.Image], list[bool]]:
|
37 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
38 |
-
has_nsfw_concepts = safety_checker(
|
39 |
-
images=[images],
|
40 |
-
clip_input=safety_checker_input.pixel_values.to("cuda")
|
41 |
-
)
|
42 |
-
|
43 |
-
return images, has_nsfw_concepts
|
44 |
-
|
45 |
-
# Function
|
46 |
-
@spaces.GPU(enable_queue=True)
|
47 |
-
def generate_image(prompt, ckpt):
|
48 |
-
global loaded
|
49 |
-
print(prompt, ckpt)
|
50 |
-
|
51 |
-
checkpoint = checkpoints[ckpt][0]
|
52 |
-
num_inference_steps = checkpoints[ckpt][1]
|
53 |
-
|
54 |
-
if loaded != num_inference_steps:
|
55 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
56 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
57 |
-
loaded = num_inference_steps
|
58 |
-
|
59 |
-
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
60 |
-
|
61 |
-
if SAFETY_CHECKER:
|
62 |
-
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
63 |
-
if any(has_nsfw_concepts):
|
64 |
-
gr.Warning("NSFW content detected.")
|
65 |
-
return Image.new("RGB", (512, 512))
|
66 |
-
return images[0]
|
67 |
-
return results.images[0]
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Gradio Interface
|
72 |
-
|
73 |
-
with gr.Blocks(css="style.css") as demo:
|
74 |
-
gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
|
75 |
-
gr.HTML("<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>")
|
76 |
-
with gr.Group():
|
77 |
-
with gr.Row():
|
78 |
-
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
79 |
-
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
80 |
-
submit = gr.Button(scale=1, variant='primary')
|
81 |
-
img = gr.Image(label='SDXL-Lightning Generated Image')
|
82 |
-
|
83 |
-
prompt.submit(fn=generate_image,
|
84 |
-
inputs=[prompt, ckpt],
|
85 |
-
outputs=img,
|
86 |
-
)
|
87 |
-
submit.click(fn=generate_image,
|
88 |
-
inputs=[prompt, ckpt],
|
89 |
-
outputs=img,
|
90 |
-
)
|
91 |
-
|
92 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
|
5 |
+
import spaces #[uncomment to use ZeroGPU]
|
6 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
device = "cuda"
|
10 |
+
model_repo_id = "advokat/noobaiXLNAIXL_epsilonPred075" # Replace to the model you would like to use
|
11 |
+
|
12 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16)
|
13 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
14 |
+
pipe.scheduler.register_to_config(
|
15 |
+
prediction_type="v_prediction",
|
16 |
+
rescale_betas_zero_snr=True,
|
17 |
+
)
|
18 |
+
pipe = pipe.to(device)
|
19 |
+
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
MAX_IMAGE_SIZE = 1024
|
22 |
+
|
23 |
+
|
24 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
+
def infer(
|
26 |
+
prompt,
|
27 |
+
negative_prompt,
|
28 |
+
seed,
|
29 |
+
randomize_seed,
|
30 |
+
width,
|
31 |
+
height,
|
32 |
+
guidance_scale,
|
33 |
+
num_inference_steps,
|
34 |
+
progress=gr.Progress(track_tqdm=True),
|
35 |
+
):
|
36 |
+
if randomize_seed:
|
37 |
+
seed = random.randint(0, MAX_SEED)
|
38 |
+
|
39 |
+
generator = torch.Generator().manual_seed(seed)
|
40 |
+
|
41 |
+
image = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
negative_prompt=negative_prompt,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
width=width,
|
47 |
+
height=height,
|
48 |
+
generator=generator,
|
49 |
+
).images[0]
|
50 |
+
|
51 |
+
return image, seed
|
52 |
+
|
53 |
+
|
54 |
+
examples = [
|
55 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
+
"An astronaut riding a green horse",
|
57 |
+
"A delicious ceviche cheesecake slice",
|
58 |
+
]
|
59 |
+
|
60 |
+
css = """
|
61 |
+
#col-container {
|
62 |
+
margin: 0 auto;
|
63 |
+
max-width: 640px;
|
64 |
+
}
|
65 |
+
"""
|
66 |
|
67 |
+
with gr.Blocks(css=css) as demo:
|
68 |
+
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
+
with gr.Row():
|
72 |
+
prompt = gr.Text(
|
73 |
+
label="Prompt",
|
74 |
+
show_label=False,
|
75 |
+
max_lines=1,
|
76 |
+
placeholder="Enter your prompt",
|
77 |
+
container=False,
|
78 |
+
)
|
79 |
+
|
80 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
+
|
82 |
+
result = gr.Image(label="Result", show_label=False)
|
83 |
+
|
84 |
+
with gr.Accordion("Advanced Settings", open=False):
|
85 |
+
negative_prompt = gr.Text(
|
86 |
+
label="Negative prompt",
|
87 |
+
max_lines=1,
|
88 |
+
placeholder="Enter a negative prompt",
|
89 |
+
visible=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
seed = gr.Slider(
|
93 |
+
label="Seed",
|
94 |
+
minimum=0,
|
95 |
+
maximum=MAX_SEED,
|
96 |
+
step=1,
|
97 |
+
value=0,
|
98 |
+
)
|
99 |
+
|
100 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
width = gr.Slider(
|
104 |
+
label="Width",
|
105 |
+
minimum=256,
|
106 |
+
maximum=MAX_IMAGE_SIZE,
|
107 |
+
step=32,
|
108 |
+
value=512, # Replace with defaults that work for your model
|
109 |
+
)
|
110 |
+
|
111 |
+
height = gr.Slider(
|
112 |
+
label="Height",
|
113 |
+
minimum=256,
|
114 |
+
maximum=MAX_IMAGE_SIZE,
|
115 |
+
step=32,
|
116 |
+
value=768, # Replace with defaults that work for your model
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
guidance_scale = gr.Slider(
|
121 |
+
label="Guidance scale",
|
122 |
+
minimum=0.0,
|
123 |
+
maximum=10.0,
|
124 |
+
step=0.1,
|
125 |
+
value=1, # Replace with defaults that work for your model
|
126 |
+
)
|
127 |
+
|
128 |
+
num_inference_steps = gr.Slider(
|
129 |
+
label="Number of inference steps",
|
130 |
+
minimum=1,
|
131 |
+
maximum=50,
|
132 |
+
step=1,
|
133 |
+
value=28, # Replace with defaults that work for your model
|
134 |
+
)
|
135 |
+
|
136 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
+
gr.on(
|
138 |
+
triggers=[run_button.click, prompt.submit],
|
139 |
+
fn=infer,
|
140 |
+
inputs=[
|
141 |
+
prompt,
|
142 |
+
negative_prompt,
|
143 |
+
seed,
|
144 |
+
randomize_seed,
|
145 |
+
width,
|
146 |
+
height,
|
147 |
+
guidance_scale,
|
148 |
+
num_inference_steps,
|
149 |
+
],
|
150 |
+
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
+
if __name__ == "__main__":
|
154 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|