ghengx
Update app.py
cd69181
import spaces
import os
from huggingface_hub import Repository
from huggingface_hub import login
init_feedback = False
try:
login(token = os.environ['HUB_TOKEN'])
repo = Repository(
local_dir="backend_fn",
repo_type="dataset",
clone_from=os.environ['DATASET'],
token=True,
git_email='[email protected]'
)
repo.git_pull()
init_feedback = True
except:
pass
import json
import uuid
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
if init_feedback:
from backend_fn.feedback import feedback
from gradio_modal import Modal
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_name = "Merdeka-LLM/merdeka-llm-hr-3b-128k-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True)
histories = []
action = None
feedback_index = None
session_id = uuid.uuid1().__str__()
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
# system_message,
max_tokens = 4096,
temperature = 0.01,
top_p = 0.95,
):
messages = [
{"role": "system", "content": "You are a professional Human Resource advisor who is familiar with HR related Malaysia Law."}
]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generate_kwargs = dict(
model_inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
streamer=streamer
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token != '<':
response += new_token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
def submit_feedback(value):
feedback(session_id, json.dumps(histories), value, action, feedback_index)
with gr.Blocks() as demo:
def vote(history,data: gr.LikeData):
global histories
global action
global feedback_index
histories = history
action = data.liked
feedback_index = data.index[0]
with Modal(visible=False) as modal:
textb = gr.Textbox(
label='Actual response',
info='Leave blank if the answer is good enough'
)
submit_btn = gr.Button(
'Submit'
)
submit_btn.click(submit_feedback,textb)
submit_btn.click(lambda: Modal(visible=False), None, modal)
submit_btn.click(lambda x: gr.update(value=''), [],[textb])
ci = gr.ChatInterface(
respond,
description='Due to an unknown bug in Gradio, we are unable to expand the conversation section to full height.'
# fill_height=True
# additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
)
ci.chatbot.show_copy_button=True
# ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")]
# ci.chatbot.height=500
if init_feedback:
ci.chatbot.like(vote, ci.chatbot, None).then(
lambda: Modal(visible=True), None, modal
)
if __name__ == "__main__":
demo.launch(
)