File size: 4,026 Bytes
06cb66f
7c2445a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06cb66f
 
 
7c2445a
 
06cb66f
 
 
 
 
 
 
 
 
 
 
 
 
df2e419
06cb66f
7c2445a
 
 
 
 
06cb66f
 
 
 
 
7c2445a
 
 
06cb66f
120ace1
ae40c8c
120ace1
06cb66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c2445a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06cb66f
 
 
 
 
7c2445a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import spaces
import os

from huggingface_hub import Repository
from huggingface_hub import login

login(token = os.environ['HUB_TOKEN'])

repo = Repository(
    local_dir="backend_fn",
    repo_type="dataset",
    clone_from=os.environ['DATASET'],
    token=True,
    git_email='[email protected]'
)
repo.git_pull()

import json
import uuid
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from backend_fn.feedback import feedback
from gradio_modal import Modal

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_name = "Merdeka-LLM/merdeka-llm-3.2b-128k-instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True)

histories = []
action = None

session_id = uuid.uuid1().__str__()

@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    # system_message,
    max_tokens = 4096,
    temperature = 0.01,
    top_p = 0.95,
):
    messages = [
        {"role": "system", "content": "You are a professional lawyer who is familiar with Malaysia Law."}
    ]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generate_kwargs = dict(
        model_inputs,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        streamer=streamer
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    for new_token in streamer:
      if new_token != '<':
          response += new_token
          yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

def submit_feedback(value):
    feedback(session_id, json.dumps(histories), value, action)


with gr.Blocks() as demo:
    def vote(history,data: gr.LikeData):
        global histories
        global action
        histories = history
        action = data.liked

    with Modal(visible=False) as modal:
        textb = gr.Textbox(
            label='Actual response',
            info='Leave blank if the answer is good enough'
        )

        submit_btn = gr.Button(
            'Submit'
        )

        submit_btn.click(submit_feedback,textb)
        submit_btn.click(lambda: Modal(visible=False), None, modal)
        submit_btn.click(lambda x: gr.update(value=''), [],[textb])


    ci = gr.ChatInterface(
        respond,
        # fill_height=True
        # additional_inputs=[
        #     # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        #     gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        #     gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
        #     gr.Slider(
        #         minimum=0.1,
        #         maximum=1.0,
        #         value=0.95,
        #         step=0.05,
        #         label="Top-p (nucleus sampling)",
        #     ),
        # ],
    )


    ci.chatbot.show_copy_button=True
    # ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")]
    # ci.chatbot.height=500

    ci.chatbot.like(vote, ci.chatbot, None).then(
        lambda: Modal(visible=True), None, modal
    )

if __name__ == "__main__":
    demo.launch(
        
    )