import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ model_name = "Merdeka-LLM/merdeka-llm-3.2b-128k-instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) streamer = TextIteratorStreamer(tokenizer, timeout=100., skip_prompt=True, skip_special_tokens=True) @spaces.GPU def respond( message, history: list[tuple[str, str]], # system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": "You are a professional lawyer who is familiar with Malaysia Law."}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generate_kwargs = dict( model_inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, streamer=streamer ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() for new_token in streamer: if new_token != '<': response += new_token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch( )