import spaces import os from huggingface_hub import Repository from huggingface_hub import login login(token = os.environ['HUB_TOKEN']) repo = Repository( local_dir="backend_fn", repo_type="dataset", clone_from=os.environ['DATASET'], token=True, git_email='zhiheng_dev@dahreply.ai' ) repo.git_pull() import json import uuid import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread from backend_fn.feedback import feedback from gradio_modal import Modal """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ model_name = "Merdeka-LLM/merdeka-llm-3.2b-128k-instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True) histories = [] action = None session_id = uuid.uuid1().__str__() @spaces.GPU def respond( message, history: list[tuple[str, str]], # system_message, max_tokens = 4096, temperature = 0.01, top_p = 0.95, ): messages = [ {"role": "system", "content": "You are a professional lawyer who is familiar with Malaysia Law."} ] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generate_kwargs = dict( model_inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, streamer=streamer ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() for new_token in streamer: if new_token != '<': response += new_token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ def submit_feedback(value): feedback(session_id, json.dumps(histories), value, action) with gr.Blocks() as demo: def vote(history,data: gr.LikeData): global histories global action histories = history action = data.liked with Modal(visible=False) as modal: textb = gr.Textbox( label='Actual response', info='Leave blank if the answer is good enough' ) submit_btn = gr.Button( 'Submit' ) submit_btn.click(submit_feedback,textb) submit_btn.click(lambda: Modal(visible=False), None, modal) submit_btn.click(lambda x: gr.update(value=''), [],[textb]) ci = gr.ChatInterface( respond, # fill_height=True # additional_inputs=[ # # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], ) ci.chatbot.show_copy_button=True # ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")] # ci.chatbot.height=500 ci.chatbot.like(vote, ci.chatbot, None).then( lambda: Modal(visible=True), None, modal ) if __name__ == "__main__": demo.launch( )