Spaces:
Sleeping
Sleeping
File size: 12,741 Bytes
c3c3648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import csv
import logging
import os
import re
from moviepy import VideoFileClip,AudioFileClip, CompositeAudioClip
from pathlib import Path
from typing import Optional, Union
from zipfile import ZipFile
import cv2
import pandas as pd
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from .utils import draw_annotations
log = logging.getLogger("fer")
class Video(object):
def __init__(
self,
video_file: str,
outdir: str = "output",
first_face_only: bool = True,
tempfile: Optional[str] = None,
):
"""Video class for extracting and saving frames for emotion detection.
:param video_file - str
:param outdir - str
:param tempdir - str
:param first_face_only - bool
:param tempfile - str
"""
assert os.path.exists(video_file), "Video file not found at {}".format(
os.path.abspath(video_file)
)
self.cap = cv2.VideoCapture(video_file)
if not os.path.isdir(outdir):
os.makedirs(outdir, exist_ok=True)
self.outdir = outdir
if not first_face_only:
log.error("Only single-face charting is implemented")
self.first_face_only = first_face_only
self.tempfile = tempfile
self.filepath = video_file
self.filename = "".join(self.filepath.split("/")[-1])
@staticmethod
def get_max_faces(data: list) -> int:
"""Get max number of faces detected in a series of frames, eg 3"""
max = 0
for frame in data:
for face in frame:
if len(face) > max:
max = len(face)
return max
@staticmethod
def _to_dict(data: Union[dict, list]) -> dict:
emotions = []
frame = data[0]
if isinstance(frame, list):
try:
emotions = frame[0]["emotions"].keys()
except IndexError:
raise Exception("No data in 'data'")
elif isinstance(frame, dict):
return data
dictlist = []
for data_idx, frame in enumerate(data):
rowdict = {}
for idx, face in enumerate(list(frame)):
if not isinstance(face, dict):
break
rowdict.update({"box" + str(idx): face["box"]})
rowdict.update(
{emo + str(idx): face["emotions"][emo] for emo in emotions}
)
dictlist.append(rowdict)
return dictlist
def to_pandas(self, data: Union[pd.DataFrame, list]) -> pd.DataFrame:
"""Convert results to pandas DataFrame"""
if isinstance(data, pd.DataFrame):
return data
if not len(data):
return pd.DataFrame()
datalist = self._to_dict(data)
df = pd.DataFrame(datalist)
if self.first_face_only:
df = self.get_first_face(df)
return df
@staticmethod
def get_first_face(df: pd.DataFrame) -> pd.DataFrame:
assert isinstance(df, pd.DataFrame), "Must be a pandas DataFrame"
try:
int(df.columns[0][-1])
except ValueError:
# Already only one face in df
return df
columns = [x for x in df.columns if x[-1] == "0"]
new_columns = [x[:-1] for x in columns]
single_df = df[columns]
single_df.columns = new_columns
return single_df
@staticmethod
def get_emotions(df: pd.DataFrame) -> list:
"""Get emotion columsn from results."""
columns = [x for x in df.columns if "box" not in x]
return df[columns]
def to_csv(self, data, filename="data.csv"):
"""Save data to csv"""
def key(item):
key_pat = re.compile(r"^(\D+)(\d+)$")
m = key_pat.match(item)
return m.group(1), int(m.group(2))
dictlist = self._to_dict(data)
columns = set().union(*(d.keys() for d in dictlist))
columns = sorted(columns, key=key) # sort by trailing number (faces)
with open("data.csv", "w", newline="") as csvfile:
writer = csv.DictWriter(csvfile, columns, lineterminator="\n")
writer.writeheader()
writer.writerows(dictlist)
return dictlist
def _close_video(self, outfile, save_frames, zip_images):
self.cap.release()
if self.display or self.save_video:
self.videowriter.release()
if self.save_video:
log.info("Completed analysis: saved to {}".format(self.tempfile or outfile))
if self.tempfile:
os.replace(self.tempfile, outfile)
if save_frames and zip_images:
log.info("Starting to Zip")
outdir = Path(self.outdir)
zip_dir = outdir / "images.zip"
images = sorted(list(outdir.glob("*.jpg")))
total = len(images)
i = 0
with ZipFile(zip_dir, "w") as zip:
for file in images:
zip.write(file, arcname=file.name)
os.remove(file)
i += 1
if i % 50 == 0:
log.info(f"Compressing: {i*100 // total}%")
log.info("Zip has finished")
def _offset_detection_box(self, faces, detection_box):
for face in faces:
original_box = face.get("box")
face["box"] = (
original_box[0] + detection_box.get("x_min"),
original_box[1] + detection_box.get("y_min"),
original_box[2],
original_box[3],
)
return faces
def _increment_frames(
self, frame, faces, video_id, root, lang="en", size_multiplier=1
):
# Save images to `self.outdir`
imgpath = os.path.join(
self.outdir, (video_id or root) + str(self.frameCount) + ".jpg"
)
if self.annotate_frames:
frame = draw_annotations(
frame,
faces,
boxes=True,
scores=True,
lang=lang,
size_multiplier=size_multiplier,
)
if self.save_frames:
cv2.imwrite(imgpath, frame)
if self.display:
cv2.imshow("Video", frame)
if self.save_video:
self.videowriter.write(frame)
self.frameCount += 1
def analyze(
self,
detector, # fer.FER instance
display: bool = False,
output: str = "csv",
frequency: Optional[int] = None,
max_results: int = None,
save_fps: Optional[int] = None,
video_id: Optional[str] = None,
save_frames: bool = True,
save_video: bool = True,
annotate_frames: bool = True,
zip_images: bool = True,
detection_box: Optional[dict] = None,
lang: str = "en",
include_audio: bool = False,
size_multiplier: int = 1,
) -> list:
"""Recognize facial expressions in video using `detector`.
Args:
detector (fer.FER): facial expression recognizer
display (bool): show images with cv2.imshow
output (str): csv or pandas
frequency (int): inference on every nth frame (higher number is faster)
max_results (int): number of frames to run inference before stopping
save_fps (bool): inference frequency = video fps // save_fps
video_id (str): filename for saving
save_frames (bool): saves frames to directory
save_video (bool): saves output video
annotate_frames (bool): add emotion labels
zip_images (bool): compress output
detection_box (dict): dict with bounding box for subimage (xmin, xmax, ymin, ymax)
lang (str): emotion language that will be shown on video
include_audio (bool): indicates if a sounded version of the prediction video should be created or not
size_multiplier (int): increases the size of emotion labels shown in the video by x(size_multiplier)
Returns:
data (list): list of results
"""
frames_emotions = []
if frequency is None:
frequency = 1
else:
frequency = int(frequency)
self.display = display
self.save_frames = save_frames
self.save_video = save_video
self.annotate_frames = annotate_frames
results_nr = 0
# Open video
assert self.cap.open(self.filepath), "Video capture not opening"
self.__emotions = detector._get_labels().items()
self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
pos_frames = self.cap.get(cv2.CAP_PROP_POS_FRAMES)
assert int(pos_frames) == 0, "Video not at index 0"
self.frameCount = 0
height, width = (
int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
)
fps = self.cap.get(cv2.CAP_PROP_FPS)
length = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
assert fps and length, "File {} not loaded".format(self.filepath)
if save_fps is not None:
frequency = fps // save_fps
log.info("Saving every {} frames".format(frequency))
log.info(
"{:.2f} fps, {} frames, {:.2f} seconds".format(fps, length, length / fps)
)
if self.save_frames:
os.makedirs(self.outdir, exist_ok=True)
log.info(f"Making directories at {self.outdir}")
root, ext = os.path.splitext(os.path.basename(self.filepath))
outfile = os.path.join(self.outdir, f"{root}_output{ext}")
if save_video:
self.videowriter = self._save_video(outfile, fps, width, height)
with logging_redirect_tqdm():
pbar = tqdm(total=length, unit="frames")
while self.cap.isOpened():
ret, frame = self.cap.read()
if not ret: # end of video
break
if frame is None:
log.warn("Empty frame")
continue
if self.frameCount % frequency != 0:
self.frameCount += 1
continue
if detection_box is not None:
frame = self._crop(frame, detection_box)
# Get faces and detect emotions; coordinates are for unpadded frame
try:
faces = detector.detect_emotions(frame)
except Exception as e:
log.error(e)
break
# Offset detection_box to include padding
if detection_box is not None:
faces = self._offset_detection_box(faces, detection_box)
self._increment_frames(frame, faces, video_id, root, lang, size_multiplier)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if faces:
frames_emotions.append(faces)
results_nr += 1
if max_results and results_nr > max_results:
break
pbar.update(1)
pbar.close()
self._close_video(outfile, save_frames, zip_images)
if include_audio:
audio_suffix = "_audio."
my_audio = AudioFileClip(self.filepath)
new_audioclip = CompositeAudioClip([my_audio])
my_output_clip = VideoFileClip(outfile)
my_output_clip.audio = new_audioclip
my_output_clip.write_videofile(audio_suffix.join(outfile.rsplit(".", 1)))
return self.to_format(frames_emotions, output)
def to_format(self, data, format):
"""Return data in format."""
methods_lookup = {"csv": self.to_csv, "pandas": self.to_pandas}
return methods_lookup[format](data)
def _save_video(self, outfile: str, fps: int, width: int, height: int):
if os.path.isfile(outfile):
os.remove(outfile)
log.info("Deleted pre-existing {}".format(outfile))
if self.tempfile and os.path.isfile(self.tempfile):
os.remove(self.tempfile)
fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
videowriter = cv2.VideoWriter(
self.tempfile or outfile, fourcc, fps, (width, height), True
)
return videowriter
@staticmethod
def _crop(frame, detection_box):
crop_frame = frame[
detection_box.get("y_min") : detection_box.get("y_max"),
detection_box.get("x_min") : detection_box.get("x_max"),
]
return crop_frame
def __del__(self):
cv2.destroyAllWindows()
|