Spaces:
Sleeping
Sleeping
File size: 11,555 Bytes
c3c3648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2018 Justin Shenk
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# IMPORTANT:
#
# This code is derived from Iván de Paz Centeno's implementation of MTCNN
# (https://github.com/ipazc/mtcnn/) and Octavia Arriaga's facial expression recognition repo
# (https://github.com/oarriaga/face_classification).
#
import logging
import os
import pkg_resources
import requests
import sys
from typing import Sequence, Tuple, Union
import cv2
import numpy as np
from tensorflow.keras.models import load_model
from .utils import load_image
logging.basicConfig(level=logging.INFO)
log = logging.getLogger("fer")
NumpyRects = Union[np.ndarray, Sequence[Tuple[int, int, int, int]]]
__author__ = "Justin Shenk"
PADDING = 40
SERVER_URL = "http://localhost:8501/v1/models/emotion_model:predict"
class FER(object):
"""
Allows performing Facial Expression Recognition ->
a) Detection of faces
b) Detection of emotions
"""
def __init__(
self,
cascade_file: str = None,
mtcnn=False,
tfserving: bool = False,
scale_factor: float = 1.1,
min_face_size: int = 50,
min_neighbors: int = 5,
offsets: tuple = (10, 10),
):
"""
Initializes the face detector and Keras model for facial expression recognition.
:param cascade_file: file URI with the Haar cascade for face classification
:param mtcnn: use MTCNN network for face detection (not yet implemented)
:param scale_factor: parameter specifying how much the image size is reduced at each image scale
:param min_face_size: minimum size of the face to detect
:param offsets: padding around face before classification
"""
self.__scale_factor = scale_factor
self.__min_neighbors = min_neighbors
self.__min_face_size = min_face_size
self.__offsets = offsets
self.tfserving = tfserving
if cascade_file is None:
cascade_file = cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
if mtcnn:
try:
from facenet_pytorch import MTCNN
except ImportError:
raise Exception(
"MTCNN not installed, install it with pip install facenet-pytorch and from facenet_pytorch import MTCNN"
)
self.__face_detector = "mtcnn"
self._mtcnn = MTCNN(keep_all=True)
else:
self.__face_detector = cv2.CascadeClassifier(cascade_file)
self._initialize_model()
def _initialize_model(self):
if self.tfserving:
self.__emotion_target_size = (64, 64) # hardcoded for now
else:
# Local Keras model
emotion_model = pkg_resources.resource_filename(
"fer", "data/emotion_model.hdf5"
)
log.debug("Emotion model: {}".format(emotion_model))
self.__emotion_classifier = load_model(emotion_model, compile=False)
self.__emotion_classifier.make_predict_function()
self.__emotion_target_size = self.__emotion_classifier.input_shape[1:3]
return
def _classify_emotions(self, gray_faces: np.ndarray) -> np.ndarray: # b x w x h
"""Run faces through online or offline classifier."""
if self.tfserving:
gray_faces = np.expand_dims(gray_faces, -1) # to 4-dimensions
instances = gray_faces.tolist()
response = requests.post(SERVER_URL, json={"instances": instances})
response.raise_for_status()
emotion_predictions = response.json()["predictions"]
return emotion_predictions
else:
return self.__emotion_classifier(gray_faces)
@staticmethod
def pad(image):
"""Pad image."""
row, col = image.shape[:2]
bottom = image[row - 2 : row, 0:col]
mean = cv2.mean(bottom)[0]
padded_image = cv2.copyMakeBorder(
image,
top=PADDING,
bottom=PADDING,
left=PADDING,
right=PADDING,
borderType=cv2.BORDER_CONSTANT,
value=[mean, mean, mean],
)
return padded_image
@staticmethod
def depad(image):
row, col = image.shape[:2]
return image[PADDING : row - PADDING, PADDING : col - PADDING]
@staticmethod
def tosquare(bbox):
"""Convert bounding box to square by elongating shorter side."""
x, y, w, h = bbox
if h > w:
diff = h - w
x -= diff // 2
w += diff
elif w > h:
diff = w - h
y -= diff // 2
h += diff
if w != h:
log.debug(f"{w} is not {h}")
return (x, y, w, h)
def find_faces(self, img: np.ndarray, bgr=True) -> list:
"""Image to list of faces bounding boxes(x,y,w,h)"""
if isinstance(self.__face_detector, cv2.CascadeClassifier):
if bgr:
gray_image_array = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else: # assume gray
gray_image_array = img
faces = self.__face_detector.detectMultiScale(
gray_image_array,
scaleFactor=self.__scale_factor,
minNeighbors=self.__min_neighbors,
flags=cv2.CASCADE_SCALE_IMAGE,
minSize=(self.__min_face_size, self.__min_face_size),
)
elif self.__face_detector == "mtcnn":
boxes, probs = self._mtcnn.detect(img)
faces = []
if type(boxes) == np.ndarray:
for face in boxes:
faces.append(
[
int(face[0]),
int(face[1]),
int(face[2]) - int(face[0]),
int(face[3]) - int(face[1]),
]
)
return faces
@staticmethod
def __preprocess_input(x, v2=False):
x = x.astype("float32")
x = x / 255.0
if v2:
x = x - 0.5
x = x * 2.0
return x
def __apply_offsets(self, face_coordinates):
"""Offset face coordinates with padding before classification.
x1, x2, y1, y2 = 0, 100, 0, 100 becomes -10, 110, -10, 110
"""
x, y, width, height = face_coordinates
x_off, y_off = self.__offsets
x1 = x - x_off
x2 = x + width + x_off
y1 = y - y_off
y2 = y + height + y_off
return x1, x2, y1, y2
@staticmethod
def _get_labels():
return {
0: "angry",
1: "disgust",
2: "fear",
3: "happy",
4: "sad",
5: "surprise",
6: "neutral",
}
def detect_emotions(
self, img: np.ndarray, face_rectangles: NumpyRects = None
) -> list:
"""
Detects bounding boxes from the specified image with ranking of emotions.
:param img: exact image path, numpy array (BGR or gray) or based64 encoded images
could be passed.
:return: list containing all the bounding boxes detected with their emotions.
"""
img = load_image(img)
emotion_labels = self._get_labels()
if face_rectangles is None:
face_rectangles = self.find_faces(img, bgr=True)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = self.pad(gray_img)
emotions = []
gray_faces = []
if face_rectangles is not None:
for face_coordinates in face_rectangles:
face_coordinates = self.tosquare(face_coordinates)
# offset to expand bounding box
# Note: x1 and y1 can be negative
x1, x2, y1, y2 = self.__apply_offsets(face_coordinates)
# account for padding in bounding box coordinates
x1 += PADDING
y1 += PADDING
x2 += PADDING
y2 += PADDING
x1 = np.clip(x1, a_min=0, a_max=None)
y1 = np.clip(y1, a_min=0, a_max=None)
gray_face = gray_img[max(0, y1) : y2, max(0, x1) : x2]
try:
gray_face = cv2.resize(gray_face, self.__emotion_target_size)
except Exception as e:
log.warn("{} resize failed: {}".format(gray_face.shape, e))
continue
# Local Keras model
gray_face = self.__preprocess_input(gray_face, True)
gray_faces.append(gray_face)
# predict all faces
if not len(gray_faces):
return emotions # no valid faces
# classify emotions
emotion_predictions = self._classify_emotions(np.array(gray_faces))
# label scores
for face_idx, face in enumerate(emotion_predictions):
labelled_emotions = {
emotion_labels[idx]: round(float(score), 2)
for idx, score in enumerate(face)
}
emotions.append(
dict(box=face_rectangles[face_idx], emotions=labelled_emotions)
)
self.emotions = emotions
return emotions
def top_emotion(
self, img: np.ndarray
) -> Tuple[Union[str, None], Union[float, None]]:
"""Convenience wrapper for `detect_emotions` returning only top emotion for first face in frame.
:param img: image to process
:return: top emotion and score (for first face in frame) or (None, None)
"""
emotions = self.detect_emotions(img=img)
top_emotions = [
max(e["emotions"], key=lambda key: e["emotions"][key]) for e in emotions
]
# Take first face
if len(top_emotions):
top_emotion = top_emotions[0]
else:
return (None, None)
score = emotions[0]["emotions"][top_emotion]
return top_emotion, score
def parse_arguments(args):
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--image", type=str, help="Image filepath")
return parser.parse_args()
def top_emotion():
args = parse_arguments(sys.argv)
fer = FER()
top_emotion, score = fer.top_emotion(args.image)
print(top_emotion, score)
def main():
top_emotion()
if __name__ == "__main__":
main()
|