Pain_detection2 / classes.py
MerlenMaven's picture
Upload 5 files
c3c3648 verified
raw
history blame
12.7 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import csv
import logging
import os
import re
from moviepy import VideoFileClip,AudioFileClip, CompositeAudioClip
from pathlib import Path
from typing import Optional, Union
from zipfile import ZipFile
import cv2
import pandas as pd
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from .utils import draw_annotations
log = logging.getLogger("fer")
class Video(object):
def __init__(
self,
video_file: str,
outdir: str = "output",
first_face_only: bool = True,
tempfile: Optional[str] = None,
):
"""Video class for extracting and saving frames for emotion detection.
:param video_file - str
:param outdir - str
:param tempdir - str
:param first_face_only - bool
:param tempfile - str
"""
assert os.path.exists(video_file), "Video file not found at {}".format(
os.path.abspath(video_file)
)
self.cap = cv2.VideoCapture(video_file)
if not os.path.isdir(outdir):
os.makedirs(outdir, exist_ok=True)
self.outdir = outdir
if not first_face_only:
log.error("Only single-face charting is implemented")
self.first_face_only = first_face_only
self.tempfile = tempfile
self.filepath = video_file
self.filename = "".join(self.filepath.split("/")[-1])
@staticmethod
def get_max_faces(data: list) -> int:
"""Get max number of faces detected in a series of frames, eg 3"""
max = 0
for frame in data:
for face in frame:
if len(face) > max:
max = len(face)
return max
@staticmethod
def _to_dict(data: Union[dict, list]) -> dict:
emotions = []
frame = data[0]
if isinstance(frame, list):
try:
emotions = frame[0]["emotions"].keys()
except IndexError:
raise Exception("No data in 'data'")
elif isinstance(frame, dict):
return data
dictlist = []
for data_idx, frame in enumerate(data):
rowdict = {}
for idx, face in enumerate(list(frame)):
if not isinstance(face, dict):
break
rowdict.update({"box" + str(idx): face["box"]})
rowdict.update(
{emo + str(idx): face["emotions"][emo] for emo in emotions}
)
dictlist.append(rowdict)
return dictlist
def to_pandas(self, data: Union[pd.DataFrame, list]) -> pd.DataFrame:
"""Convert results to pandas DataFrame"""
if isinstance(data, pd.DataFrame):
return data
if not len(data):
return pd.DataFrame()
datalist = self._to_dict(data)
df = pd.DataFrame(datalist)
if self.first_face_only:
df = self.get_first_face(df)
return df
@staticmethod
def get_first_face(df: pd.DataFrame) -> pd.DataFrame:
assert isinstance(df, pd.DataFrame), "Must be a pandas DataFrame"
try:
int(df.columns[0][-1])
except ValueError:
# Already only one face in df
return df
columns = [x for x in df.columns if x[-1] == "0"]
new_columns = [x[:-1] for x in columns]
single_df = df[columns]
single_df.columns = new_columns
return single_df
@staticmethod
def get_emotions(df: pd.DataFrame) -> list:
"""Get emotion columsn from results."""
columns = [x for x in df.columns if "box" not in x]
return df[columns]
def to_csv(self, data, filename="data.csv"):
"""Save data to csv"""
def key(item):
key_pat = re.compile(r"^(\D+)(\d+)$")
m = key_pat.match(item)
return m.group(1), int(m.group(2))
dictlist = self._to_dict(data)
columns = set().union(*(d.keys() for d in dictlist))
columns = sorted(columns, key=key) # sort by trailing number (faces)
with open("data.csv", "w", newline="") as csvfile:
writer = csv.DictWriter(csvfile, columns, lineterminator="\n")
writer.writeheader()
writer.writerows(dictlist)
return dictlist
def _close_video(self, outfile, save_frames, zip_images):
self.cap.release()
if self.display or self.save_video:
self.videowriter.release()
if self.save_video:
log.info("Completed analysis: saved to {}".format(self.tempfile or outfile))
if self.tempfile:
os.replace(self.tempfile, outfile)
if save_frames and zip_images:
log.info("Starting to Zip")
outdir = Path(self.outdir)
zip_dir = outdir / "images.zip"
images = sorted(list(outdir.glob("*.jpg")))
total = len(images)
i = 0
with ZipFile(zip_dir, "w") as zip:
for file in images:
zip.write(file, arcname=file.name)
os.remove(file)
i += 1
if i % 50 == 0:
log.info(f"Compressing: {i*100 // total}%")
log.info("Zip has finished")
def _offset_detection_box(self, faces, detection_box):
for face in faces:
original_box = face.get("box")
face["box"] = (
original_box[0] + detection_box.get("x_min"),
original_box[1] + detection_box.get("y_min"),
original_box[2],
original_box[3],
)
return faces
def _increment_frames(
self, frame, faces, video_id, root, lang="en", size_multiplier=1
):
# Save images to `self.outdir`
imgpath = os.path.join(
self.outdir, (video_id or root) + str(self.frameCount) + ".jpg"
)
if self.annotate_frames:
frame = draw_annotations(
frame,
faces,
boxes=True,
scores=True,
lang=lang,
size_multiplier=size_multiplier,
)
if self.save_frames:
cv2.imwrite(imgpath, frame)
if self.display:
cv2.imshow("Video", frame)
if self.save_video:
self.videowriter.write(frame)
self.frameCount += 1
def analyze(
self,
detector, # fer.FER instance
display: bool = False,
output: str = "csv",
frequency: Optional[int] = None,
max_results: int = None,
save_fps: Optional[int] = None,
video_id: Optional[str] = None,
save_frames: bool = True,
save_video: bool = True,
annotate_frames: bool = True,
zip_images: bool = True,
detection_box: Optional[dict] = None,
lang: str = "en",
include_audio: bool = False,
size_multiplier: int = 1,
) -> list:
"""Recognize facial expressions in video using `detector`.
Args:
detector (fer.FER): facial expression recognizer
display (bool): show images with cv2.imshow
output (str): csv or pandas
frequency (int): inference on every nth frame (higher number is faster)
max_results (int): number of frames to run inference before stopping
save_fps (bool): inference frequency = video fps // save_fps
video_id (str): filename for saving
save_frames (bool): saves frames to directory
save_video (bool): saves output video
annotate_frames (bool): add emotion labels
zip_images (bool): compress output
detection_box (dict): dict with bounding box for subimage (xmin, xmax, ymin, ymax)
lang (str): emotion language that will be shown on video
include_audio (bool): indicates if a sounded version of the prediction video should be created or not
size_multiplier (int): increases the size of emotion labels shown in the video by x(size_multiplier)
Returns:
data (list): list of results
"""
frames_emotions = []
if frequency is None:
frequency = 1
else:
frequency = int(frequency)
self.display = display
self.save_frames = save_frames
self.save_video = save_video
self.annotate_frames = annotate_frames
results_nr = 0
# Open video
assert self.cap.open(self.filepath), "Video capture not opening"
self.__emotions = detector._get_labels().items()
self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
pos_frames = self.cap.get(cv2.CAP_PROP_POS_FRAMES)
assert int(pos_frames) == 0, "Video not at index 0"
self.frameCount = 0
height, width = (
int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
)
fps = self.cap.get(cv2.CAP_PROP_FPS)
length = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
assert fps and length, "File {} not loaded".format(self.filepath)
if save_fps is not None:
frequency = fps // save_fps
log.info("Saving every {} frames".format(frequency))
log.info(
"{:.2f} fps, {} frames, {:.2f} seconds".format(fps, length, length / fps)
)
if self.save_frames:
os.makedirs(self.outdir, exist_ok=True)
log.info(f"Making directories at {self.outdir}")
root, ext = os.path.splitext(os.path.basename(self.filepath))
outfile = os.path.join(self.outdir, f"{root}_output{ext}")
if save_video:
self.videowriter = self._save_video(outfile, fps, width, height)
with logging_redirect_tqdm():
pbar = tqdm(total=length, unit="frames")
while self.cap.isOpened():
ret, frame = self.cap.read()
if not ret: # end of video
break
if frame is None:
log.warn("Empty frame")
continue
if self.frameCount % frequency != 0:
self.frameCount += 1
continue
if detection_box is not None:
frame = self._crop(frame, detection_box)
# Get faces and detect emotions; coordinates are for unpadded frame
try:
faces = detector.detect_emotions(frame)
except Exception as e:
log.error(e)
break
# Offset detection_box to include padding
if detection_box is not None:
faces = self._offset_detection_box(faces, detection_box)
self._increment_frames(frame, faces, video_id, root, lang, size_multiplier)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if faces:
frames_emotions.append(faces)
results_nr += 1
if max_results and results_nr > max_results:
break
pbar.update(1)
pbar.close()
self._close_video(outfile, save_frames, zip_images)
if include_audio:
audio_suffix = "_audio."
my_audio = AudioFileClip(self.filepath)
new_audioclip = CompositeAudioClip([my_audio])
my_output_clip = VideoFileClip(outfile)
my_output_clip.audio = new_audioclip
my_output_clip.write_videofile(audio_suffix.join(outfile.rsplit(".", 1)))
return self.to_format(frames_emotions, output)
def to_format(self, data, format):
"""Return data in format."""
methods_lookup = {"csv": self.to_csv, "pandas": self.to_pandas}
return methods_lookup[format](data)
def _save_video(self, outfile: str, fps: int, width: int, height: int):
if os.path.isfile(outfile):
os.remove(outfile)
log.info("Deleted pre-existing {}".format(outfile))
if self.tempfile and os.path.isfile(self.tempfile):
os.remove(self.tempfile)
fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
videowriter = cv2.VideoWriter(
self.tempfile or outfile, fourcc, fps, (width, height), True
)
return videowriter
@staticmethod
def _crop(frame, detection_box):
crop_frame = frame[
detection_box.get("y_min") : detection_box.get("y_max"),
detection_box.get("x_min") : detection_box.get("x_max"),
]
return crop_frame
def __del__(self):
cv2.destroyAllWindows()