Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import librosa
|
5 |
import subprocess
|
6 |
from langdetect import detect
|
|
|
7 |
|
8 |
-
#
|
9 |
MODELS = {
|
10 |
-
"es":
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
|
15 |
def convert_audio_to_wav(audio_path):
|
@@ -19,58 +28,64 @@ def convert_audio_to_wav(audio_path):
|
|
19 |
return wav_path
|
20 |
|
21 |
def detect_language(audio_path):
|
22 |
-
# Cargar los primeros 15 segundos del audio
|
23 |
speech, _ = librosa.load(audio_path, sr=16000, duration=15)
|
24 |
-
|
25 |
-
|
26 |
-
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
27 |
-
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
|
28 |
-
with torch.no_grad():
|
29 |
-
logits = model(input_values).logits
|
30 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
31 |
-
transcription = processor.batch_decode(predicted_ids)[0]
|
32 |
return detect(transcription)
|
33 |
|
34 |
-
def transcribe_audio(audio):
|
35 |
-
# Convertir audio a formato WAV
|
36 |
wav_audio = convert_audio_to_wav(audio)
|
|
|
37 |
|
38 |
-
|
39 |
-
language = detect_language(wav_audio)
|
40 |
-
model_name = MODELS.get(language, "facebook/wav2vec2-large-960h") # Modelo predeterminado en caso de que no se detecte el idioma
|
41 |
-
|
42 |
-
# Cargar el modelo y el procesador adecuados
|
43 |
-
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
44 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
45 |
-
|
46 |
-
# Cargar el audio completo
|
47 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
with torch.no_grad():
|
53 |
-
logits = model(input_values).logits
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
file.write(transcription)
|
62 |
|
63 |
-
return
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
# Configurar la interfaz de Gradio
|
66 |
iface = gr.Interface(
|
67 |
-
fn=
|
68 |
inputs=gr.Audio(type="filepath"),
|
69 |
-
outputs=
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
-
# Iniciar la interfaz
|
75 |
if __name__ == "__main__":
|
76 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
import librosa
|
5 |
import subprocess
|
6 |
from langdetect import detect
|
7 |
+
import os
|
8 |
|
9 |
+
# Models by language
|
10 |
MODELS = {
|
11 |
+
"es": [
|
12 |
+
"jonatasgrosman/wav2vec2-large-xlsr-53-spanish",
|
13 |
+
"openai/whisper-small",
|
14 |
+
"other/spanish-model"
|
15 |
+
],
|
16 |
+
"en": [
|
17 |
+
"facebook/wav2vec2-large-960h",
|
18 |
+
"openai/whisper-small",
|
19 |
+
"other/english-model"
|
20 |
+
],
|
21 |
+
# Add more models per language if needed
|
22 |
}
|
23 |
|
24 |
def convert_audio_to_wav(audio_path):
|
|
|
28 |
return wav_path
|
29 |
|
30 |
def detect_language(audio_path):
|
|
|
31 |
speech, _ = librosa.load(audio_path, sr=16000, duration=15)
|
32 |
+
transcriber = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-960h")
|
33 |
+
transcription = transcriber(speech)["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return detect(transcription)
|
35 |
|
36 |
+
def transcribe_audio(audio, model_name):
|
|
|
37 |
wav_audio = convert_audio_to_wav(audio)
|
38 |
+
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
39 |
|
40 |
+
chunk_duration = 30 # seconds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
42 |
+
duration = len(speech) / rate
|
43 |
+
|
44 |
+
transcription = ""
|
45 |
+
for i in range(0, int(duration), chunk_duration):
|
46 |
+
end = min(i + chunk_duration, duration)
|
47 |
+
chunk = speech[int(i * rate):int(end * rate)]
|
48 |
+
transcription += transcriber(chunk)["text"] + " "
|
49 |
|
50 |
+
output_file = "transcription.txt"
|
51 |
+
with open(output_file, "w", encoding="utf-8") as file:
|
52 |
+
file.write(transcription.strip())
|
|
|
|
|
53 |
|
54 |
+
return output_file
|
55 |
+
|
56 |
+
def detect_and_select_model(audio):
|
57 |
+
wav_audio = convert_audio_to_wav(audio)
|
58 |
+
language = detect_language(wav_audio)
|
59 |
+
model_options = MODELS.get(language, MODELS["en"])
|
60 |
+
return language, model_options
|
61 |
+
|
62 |
+
def combined_interface(audio):
|
63 |
+
language, model_options = detect_and_select_model(audio)
|
64 |
+
selected_model = model_options[0]
|
65 |
+
transcription_file = transcribe_audio(audio, selected_model)
|
66 |
|
67 |
+
with open(transcription_file, "r", encoding="utf-8") as file:
|
68 |
+
transcription_text = file.read()
|
|
|
69 |
|
70 |
+
return {
|
71 |
+
"Detected Language": language,
|
72 |
+
"Available Models": model_options,
|
73 |
+
"Selected Model": selected_model,
|
74 |
+
"Transcription": transcription_text
|
75 |
+
}
|
76 |
|
|
|
77 |
iface = gr.Interface(
|
78 |
+
fn=combined_interface,
|
79 |
inputs=gr.Audio(type="filepath"),
|
80 |
+
outputs=[
|
81 |
+
gr.Textbox(label="Detected Language"),
|
82 |
+
gr.Dropdown(label="Available Models", choices=[]),
|
83 |
+
gr.Textbox(label="Selected Model"),
|
84 |
+
gr.Textbox(label="Transcription", lines=10)
|
85 |
+
],
|
86 |
+
title="Multilingual Audio Transcriber",
|
87 |
+
description="Upload an audio file to detect the language, select the transcription model, and get the transcription."
|
88 |
)
|
89 |
|
|
|
90 |
if __name__ == "__main__":
|
91 |
+
iface.launch()
|