Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
# Cargar el modelo y el procesador de Hugging Face
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
9 |
+
|
10 |
+
def transcribe_audio(audio):
|
11 |
+
# Cargar el audio usando librosa
|
12 |
+
speech, rate = librosa.load(audio, sr=16000)
|
13 |
+
|
14 |
+
# Procesar el audio
|
15 |
+
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values
|
16 |
+
# Generar las predicciones (logits)
|
17 |
+
with torch.no_grad():
|
18 |
+
logits = model(input_values).logits
|
19 |
+
|
20 |
+
# Obtener las predicciones (tokens) y convertirlas en texto
|
21 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
22 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
23 |
+
|
24 |
+
# Guardar la transcripci贸n en un archivo de texto
|
25 |
+
with open("transcription.txt", "w") as file:
|
26 |
+
file.write(transcription)
|
27 |
+
|
28 |
+
return "transcription.txt"
|
29 |
+
|
30 |
+
# Configurar la interfaz de Gradio
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=transcribe_audio,
|
33 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
34 |
+
outputs=gr.File(file_path=True),
|
35 |
+
title="Audio Transcriber",
|
36 |
+
description="Sube un archivo de audio y obt茅n la transcripci贸n en un archivo de texto."
|
37 |
+
)
|
38 |
+
|
39 |
+
# Iniciar la interfaz
|
40 |
+
if __name__ == "__main__":
|
41 |
+
iface.launch()
|