Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import os
|
|
8 |
import warnings
|
9 |
from transformers import logging
|
10 |
import math
|
|
|
|
|
11 |
|
12 |
# Suppress warnings
|
13 |
warnings.filterwarnings("ignore")
|
@@ -58,7 +60,12 @@ def detect_language(audio_path):
|
|
58 |
|
59 |
return max(langs, key=lambda x: x.prob).lang
|
60 |
|
61 |
-
def
|
|
|
|
|
|
|
|
|
|
|
62 |
wav_audio = convert_audio_to_wav(audio)
|
63 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
64 |
duration = len(speech) / rate
|
@@ -69,6 +76,7 @@ def transcribe_audio_stream(audio, model_name):
|
|
69 |
|
70 |
chunk_duration = 30 # seconds
|
71 |
|
|
|
72 |
for i in range(0, int(duration), chunk_duration):
|
73 |
end = min(i + chunk_duration, duration)
|
74 |
chunk = speech[int(i * rate):int(end * rate)]
|
@@ -78,19 +86,38 @@ def transcribe_audio_stream(audio, model_name):
|
|
78 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
79 |
|
80 |
progress = min(100, (end / duration) * 100)
|
81 |
-
|
|
|
|
|
82 |
else:
|
83 |
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
84 |
|
85 |
chunk_duration = 10 # seconds
|
86 |
|
|
|
87 |
for i in range(0, int(duration), chunk_duration):
|
88 |
end = min(i + chunk_duration, duration)
|
89 |
chunk = speech[int(i * rate):int(end * rate)]
|
90 |
result = transcriber(chunk)
|
91 |
|
92 |
progress = min(100, (end / duration) * 100)
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def detect_and_select_model(audio):
|
96 |
wav_audio = convert_audio_to_wav(audio)
|
@@ -98,24 +125,38 @@ def detect_and_select_model(audio):
|
|
98 |
model_options = MODELS.get(language, MODELS["en"])
|
99 |
return language, model_options
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def combined_interface(audio):
|
102 |
try:
|
103 |
language, model_options = detect_and_select_model(audio)
|
104 |
selected_model = model_options[0]
|
105 |
|
106 |
-
yield language, model_options, selected_model,
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
progress_int = math.floor(progress)
|
112 |
status = f"Transcribing... {progress_int}% complete"
|
113 |
-
yield language, model_options, selected_model,
|
114 |
|
115 |
# Clean up temporary files
|
116 |
os.remove("converted_audio.wav")
|
117 |
|
118 |
-
yield language, model_options, selected_model,
|
119 |
|
120 |
except Exception as e:
|
121 |
yield str(e), [], "", "An error occurred during processing.", 0, "Error"
|
@@ -129,12 +170,14 @@ iface = gr.Interface(
|
|
129 |
gr.Textbox(label="Selected Model"),
|
130 |
gr.Textbox(label="Transcription", lines=10),
|
131 |
gr.Slider(minimum=0, maximum=100, label="Progress", interactive=False),
|
132 |
-
gr.Textbox(label="Status")
|
|
|
|
|
133 |
],
|
134 |
-
title="Multilingual Audio Transcriber with Real-time Display and
|
135 |
-
description="Upload an audio file to detect the language, select the transcription model, and get the transcription in real-time. Optimized for Spanish, English, and Portuguese.",
|
136 |
live=True
|
137 |
)
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
-
iface.queue().launch()
|
|
|
8 |
import warnings
|
9 |
from transformers import logging
|
10 |
import math
|
11 |
+
import json
|
12 |
+
from pyannote.audio import Pipeline
|
13 |
|
14 |
# Suppress warnings
|
15 |
warnings.filterwarnings("ignore")
|
|
|
60 |
|
61 |
return max(langs, key=lambda x: x.prob).lang
|
62 |
|
63 |
+
def diarize_audio(wav_audio):
|
64 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
|
65 |
+
diarization = pipeline(wav_audio)
|
66 |
+
return diarization
|
67 |
+
|
68 |
+
def transcribe_audio_stream(audio, model_name, diarization):
|
69 |
wav_audio = convert_audio_to_wav(audio)
|
70 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
71 |
duration = len(speech) / rate
|
|
|
76 |
|
77 |
chunk_duration = 30 # seconds
|
78 |
|
79 |
+
transcriptions = []
|
80 |
for i in range(0, int(duration), chunk_duration):
|
81 |
end = min(i + chunk_duration, duration)
|
82 |
chunk = speech[int(i * rate):int(end * rate)]
|
|
|
86 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
87 |
|
88 |
progress = min(100, (end / duration) * 100)
|
89 |
+
timestamp = i
|
90 |
+
transcriptions.append((timestamp, transcription))
|
91 |
+
yield transcriptions, progress
|
92 |
else:
|
93 |
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
94 |
|
95 |
chunk_duration = 10 # seconds
|
96 |
|
97 |
+
transcriptions = []
|
98 |
for i in range(0, int(duration), chunk_duration):
|
99 |
end = min(i + chunk_duration, duration)
|
100 |
chunk = speech[int(i * rate):int(end * rate)]
|
101 |
result = transcriber(chunk)
|
102 |
|
103 |
progress = min(100, (end / duration) * 100)
|
104 |
+
timestamp = i
|
105 |
+
transcriptions.append((timestamp, result["text"]))
|
106 |
+
yield transcriptions, progress
|
107 |
+
|
108 |
+
# Merge diarization results with transcription
|
109 |
+
speaker_transcriptions = []
|
110 |
+
for segment in diarization.itertracks(yield_label=True):
|
111 |
+
start, end, speaker = segment
|
112 |
+
start_time = start / rate
|
113 |
+
end_time = end / rate
|
114 |
+
text_segment = ""
|
115 |
+
for ts, text in transcriptions:
|
116 |
+
if start_time <= ts <= end_time:
|
117 |
+
text_segment += text + " "
|
118 |
+
speaker_transcriptions.append((start_time, end_time, speaker, text_segment.strip()))
|
119 |
+
|
120 |
+
return speaker_transcriptions
|
121 |
|
122 |
def detect_and_select_model(audio):
|
123 |
wav_audio = convert_audio_to_wav(audio)
|
|
|
125 |
model_options = MODELS.get(language, MODELS["en"])
|
126 |
return language, model_options
|
127 |
|
128 |
+
def save_transcription(transcriptions, file_format):
|
129 |
+
if file_format == "txt":
|
130 |
+
with open("transcription.txt", "w") as f:
|
131 |
+
for start, end, speaker, text in transcriptions:
|
132 |
+
f.write(f"[{start}-{end}] {speaker}: {text}\n")
|
133 |
+
return "transcription.txt"
|
134 |
+
elif file_format == "json":
|
135 |
+
with open("transcription.json", "w") as f:
|
136 |
+
json.dump(transcriptions, f)
|
137 |
+
return "transcription.json"
|
138 |
+
|
139 |
def combined_interface(audio):
|
140 |
try:
|
141 |
language, model_options = detect_and_select_model(audio)
|
142 |
selected_model = model_options[0]
|
143 |
|
144 |
+
yield language, model_options, selected_model, [], 0, "Initializing..."
|
145 |
|
146 |
+
wav_audio = convert_audio_to_wav(audio)
|
147 |
+
diarization = diarize_audio(wav_audio)
|
148 |
+
transcriptions = []
|
149 |
+
for partial_transcriptions, progress in transcribe_audio_stream(audio, selected_model, diarization):
|
150 |
+
transcriptions = partial_transcriptions
|
151 |
+
transcriptions_text = "\n".join([f"[{start}-{end}] {speaker}: {text}" for start, end, speaker, text in transcriptions])
|
152 |
progress_int = math.floor(progress)
|
153 |
status = f"Transcribing... {progress_int}% complete"
|
154 |
+
yield language, model_options, selected_model, transcriptions_text, progress_int, status
|
155 |
|
156 |
# Clean up temporary files
|
157 |
os.remove("converted_audio.wav")
|
158 |
|
159 |
+
yield language, model_options, selected_model, transcriptions_text, 100, "Transcription complete!"
|
160 |
|
161 |
except Exception as e:
|
162 |
yield str(e), [], "", "An error occurred during processing.", 0, "Error"
|
|
|
170 |
gr.Textbox(label="Selected Model"),
|
171 |
gr.Textbox(label="Transcription", lines=10),
|
172 |
gr.Slider(minimum=0, maximum=100, label="Progress", interactive=False),
|
173 |
+
gr.Textbox(label="Status"),
|
174 |
+
gr.File(label="Download Transcription (TXT)", type="file", interactive=True, value="transcription.txt"),
|
175 |
+
gr.File(label="Download Transcription (JSON)", type="file", interactive=True, value="transcription.json")
|
176 |
],
|
177 |
+
title="Multilingual Audio Transcriber with Real-time Display, Timestamps, and Speaker Diarization",
|
178 |
+
description="Upload an audio file to detect the language, select the transcription model, and get the transcription with timestamps and speaker labels in real-time. Download the transcription as TXT or JSON. Optimized for Spanish, English, and Portuguese.",
|
179 |
live=True
|
180 |
)
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
iface.queue().launch()
|