Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline,
|
3 |
import torch
|
4 |
import librosa
|
5 |
import subprocess
|
6 |
from langdetect import detect_langs
|
7 |
import os
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Updated models by language
|
11 |
MODELS = {
|
@@ -34,56 +40,57 @@ def convert_audio_to_wav(audio_path):
|
|
34 |
return wav_path
|
35 |
|
36 |
def detect_language(audio_path):
|
37 |
-
speech, _ = librosa.load(audio_path, sr=16000, duration=30)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
models = ["facebook/wav2vec2-large-xlsr-53-spanish", "facebook/wav2vec2-large-xlsr-53-portuguese", "facebook/wav2vec2-large-960h"]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
inputs = processor(speech, sampling_rate=16000, return_tensors="pt", padding=True)
|
48 |
-
with torch.no_grad():
|
49 |
-
logits = model(inputs.input_values).logits
|
50 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
51 |
-
transcription = processor.batch_decode(predicted_ids)[0]
|
52 |
-
transcriptions.append(transcription)
|
53 |
|
54 |
-
|
55 |
-
combined_text = " ".join(transcriptions)
|
56 |
-
langs = detect_langs(combined_text)
|
57 |
|
58 |
-
# Check confidence levels
|
59 |
es_confidence = next((lang.prob for lang in langs if lang.lang == 'es'), 0)
|
60 |
pt_confidence = next((lang.prob for lang in langs if lang.lang == 'pt'), 0)
|
61 |
|
62 |
-
# If Spanish and Portuguese are close, prefer Spanish for Latin American content
|
63 |
if abs(es_confidence - pt_confidence) < 0.2:
|
64 |
return 'es'
|
65 |
|
66 |
return max(langs, key=lambda x: x.prob).lang
|
67 |
|
68 |
-
def
|
69 |
wav_audio = convert_audio_to_wav(audio)
|
70 |
-
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
71 |
-
|
72 |
-
chunk_duration = 30 # seconds
|
73 |
-
speech, rate = librosa.load(wav_audio, sr=16000)
|
74 |
-
duration = len(speech) / rate
|
75 |
-
|
76 |
-
transcription = ""
|
77 |
-
for i in range(0, int(duration), chunk_duration):
|
78 |
-
end = min(i + chunk_duration, duration)
|
79 |
-
chunk = speech[int(i * rate):int(end * rate)]
|
80 |
-
transcription += transcriber(chunk)["text"] + " "
|
81 |
-
|
82 |
-
output_file = "transcription.txt"
|
83 |
-
with open(output_file, "w", encoding="utf-8") as file:
|
84 |
-
file.write(transcription.strip())
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
def detect_and_select_model(audio):
|
89 |
wav_audio = convert_audio_to_wav(audio)
|
@@ -95,18 +102,19 @@ def combined_interface(audio):
|
|
95 |
try:
|
96 |
language, model_options = detect_and_select_model(audio)
|
97 |
selected_model = model_options[0]
|
98 |
-
transcription_file = transcribe_audio(audio, selected_model)
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Clean up temporary files
|
104 |
-
os.remove(transcription_file)
|
105 |
os.remove("converted_audio.wav")
|
106 |
|
107 |
-
return language, gr.Dropdown.update(choices=model_options, value=selected_model), selected_model, transcription_text
|
108 |
except Exception as e:
|
109 |
-
|
110 |
|
111 |
iface = gr.Interface(
|
112 |
fn=combined_interface,
|
@@ -117,9 +125,10 @@ iface = gr.Interface(
|
|
117 |
gr.Textbox(label="Selected Model"),
|
118 |
gr.Textbox(label="Transcription", lines=10)
|
119 |
],
|
120 |
-
title="Multilingual Audio Transcriber
|
121 |
-
description="Upload an audio file to detect the language, select the transcription model, and get the transcription. Optimized for
|
|
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
import librosa
|
5 |
import subprocess
|
6 |
from langdetect import detect_langs
|
7 |
import os
|
8 |
+
import warnings
|
9 |
+
from transformers import logging
|
10 |
+
|
11 |
+
# Suppress warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
logging.set_verbosity_error()
|
14 |
+
|
15 |
|
16 |
# Updated models by language
|
17 |
MODELS = {
|
|
|
40 |
return wav_path
|
41 |
|
42 |
def detect_language(audio_path):
|
43 |
+
speech, _ = librosa.load(audio_path, sr=16000, duration=30)
|
44 |
|
45 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
46 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
|
|
47 |
|
48 |
+
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
|
49 |
+
predicted_ids = model.generate(input_features)
|
50 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
langs = detect_langs(transcription)
|
|
|
|
|
53 |
|
|
|
54 |
es_confidence = next((lang.prob for lang in langs if lang.lang == 'es'), 0)
|
55 |
pt_confidence = next((lang.prob for lang in langs if lang.lang == 'pt'), 0)
|
56 |
|
|
|
57 |
if abs(es_confidence - pt_confidence) < 0.2:
|
58 |
return 'es'
|
59 |
|
60 |
return max(langs, key=lambda x: x.prob).lang
|
61 |
|
62 |
+
def transcribe_audio_stream(audio, model_name):
|
63 |
wav_audio = convert_audio_to_wav(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
if "whisper" in model_name:
|
66 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
67 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
68 |
+
|
69 |
+
chunk_duration = 30 # seconds
|
70 |
+
speech, rate = librosa.load(wav_audio, sr=16000)
|
71 |
+
duration = len(speech) / rate
|
72 |
+
|
73 |
+
for i in range(0, int(duration), chunk_duration):
|
74 |
+
end = min(i + chunk_duration, duration)
|
75 |
+
chunk = speech[int(i * rate):int(end * rate)]
|
76 |
+
|
77 |
+
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features
|
78 |
+
predicted_ids = model.generate(input_features)
|
79 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
80 |
+
|
81 |
+
yield transcription
|
82 |
+
else:
|
83 |
+
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
84 |
+
|
85 |
+
chunk_duration = 10 # seconds
|
86 |
+
speech, rate = librosa.load(wav_audio, sr=16000)
|
87 |
+
duration = len(speech) / rate
|
88 |
+
|
89 |
+
for i in range(0, int(duration), chunk_duration):
|
90 |
+
end = min(i + chunk_duration, duration)
|
91 |
+
chunk = speech[int(i * rate):int(end * rate)]
|
92 |
+
result = transcriber(chunk)
|
93 |
+
yield result["text"]
|
94 |
|
95 |
def detect_and_select_model(audio):
|
96 |
wav_audio = convert_audio_to_wav(audio)
|
|
|
102 |
try:
|
103 |
language, model_options = detect_and_select_model(audio)
|
104 |
selected_model = model_options[0]
|
|
|
105 |
|
106 |
+
yield language, gr.Dropdown.update(choices=model_options, value=selected_model), selected_model, ""
|
107 |
+
|
108 |
+
full_transcription = ""
|
109 |
+
for partial_transcription in transcribe_audio_stream(audio, selected_model):
|
110 |
+
full_transcription += partial_transcription + " "
|
111 |
+
yield language, gr.Dropdown.update(choices=model_options, value=selected_model), selected_model, full_transcription.strip()
|
112 |
|
113 |
# Clean up temporary files
|
|
|
114 |
os.remove("converted_audio.wav")
|
115 |
|
|
|
116 |
except Exception as e:
|
117 |
+
yield str(e), gr.Dropdown.update(choices=[]), "", "An error occurred during processing."
|
118 |
|
119 |
iface = gr.Interface(
|
120 |
fn=combined_interface,
|
|
|
125 |
gr.Textbox(label="Selected Model"),
|
126 |
gr.Textbox(label="Transcription", lines=10)
|
127 |
],
|
128 |
+
title="Multilingual Audio Transcriber with Real-time Display",
|
129 |
+
description="Upload an audio file to detect the language, select the transcription model, and get the transcription in real-time. Optimized for Spanish and English.",
|
130 |
+
live=True
|
131 |
)
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
+
iface.queue().launch()
|