Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,49 @@ import gradio as gr
|
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import torch
|
4 |
import librosa
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def transcribe_audio(audio):
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Procesar el audio
|
15 |
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values
|
@@ -32,7 +67,7 @@ iface = gr.Interface(
|
|
32 |
fn=transcribe_audio,
|
33 |
inputs=gr.Audio(type="filepath"),
|
34 |
outputs=gr.File(),
|
35 |
-
title="Audio
|
36 |
description="Sube un archivo de audio y obtén la transcripción en un archivo de texto."
|
37 |
)
|
38 |
|
|
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import torch
|
4 |
import librosa
|
5 |
+
import subprocess
|
6 |
+
from langdetect import detect
|
7 |
|
8 |
+
# Modelos por idioma
|
9 |
+
MODELS = {
|
10 |
+
"es": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish",
|
11 |
+
"en": "facebook/wav2vec2-large-960h", # Puedes añadir más modelos aquí según sea necesario
|
12 |
+
# Añadir más modelos por idioma si es necesario
|
13 |
+
}
|
14 |
+
|
15 |
+
def convert_audio_to_wav(audio_path):
|
16 |
+
wav_path = "converted_audio.wav"
|
17 |
+
command = ["ffmpeg", "-i", audio_path, "-ac", "1", "-ar", "16000", wav_path]
|
18 |
+
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
19 |
+
return wav_path
|
20 |
+
|
21 |
+
def detect_language(audio_path):
|
22 |
+
# Cargar los primeros 15 segundos del audio
|
23 |
+
speech, _ = librosa.load(audio_path, sr=16000, duration=15)
|
24 |
+
# Convertir audio a texto usando el modelo inglés como predeterminado para detección
|
25 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
26 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
27 |
+
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
|
28 |
+
with torch.no_grad():
|
29 |
+
logits = model(input_values).logits
|
30 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
31 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
32 |
+
return detect(transcription)
|
33 |
|
34 |
def transcribe_audio(audio):
|
35 |
+
# Convertir audio a formato WAV
|
36 |
+
wav_audio = convert_audio_to_wav(audio)
|
37 |
+
|
38 |
+
# Detectar el idioma del audio
|
39 |
+
language = detect_language(wav_audio)
|
40 |
+
model_name = MODELS.get(language, "facebook/wav2vec2-large-960h") # Modelo predeterminado en caso de que no se detecte el idioma
|
41 |
+
|
42 |
+
# Cargar el modelo y el procesador adecuados
|
43 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
44 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
45 |
+
|
46 |
+
# Cargar el audio completo
|
47 |
+
speech, rate = librosa.load(wav_audio, sr=16000)
|
48 |
|
49 |
# Procesar el audio
|
50 |
input_values = processor(speech, return_tensors="pt", sampling_rate=rate).input_values
|
|
|
67 |
fn=transcribe_audio,
|
68 |
inputs=gr.Audio(type="filepath"),
|
69 |
outputs=gr.File(),
|
70 |
+
title="Transcriptor de Audio Multilingüe",
|
71 |
description="Sube un archivo de audio y obtén la transcripción en un archivo de texto."
|
72 |
)
|
73 |
|