import gradio as gr from transformers import pipeline, ImageClassificationPipeline class MultiClassLabel(ImageClassificationPipeline): def postprocess(self, model_outputs, top_k=5): if top_k > self.model.config.num_labels: top_k = self.model.config.num_labels if self.framework == "pt": probs = model_outputs.logits.sigmoid()[0] scores, ids = probs.topk(top_k) elif self.framework == "tf": probs = stable_softmax(model_outputs.logits, axis=-1)[0] topk = tf.math.top_k(probs, k=top_k) scores, ids = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}") scores = scores.tolist() ids = ids.tolist() return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] pipe_aesthetic = pipeline("image-classification", "./sonic", pipeline_class=MultiClassLabel) def aesthetic(input_img): data = pipe_aesthetic(input_img, top_k=5) final = {} for d in data: final[d["label"]] = d["score"] return final demo_aesthetic = gr.Interface(fn=aesthetic, inputs=gr.Image(type="pil"), outputs=gr.Label(label="characters")) gr.Parallel(demo_aesthetic).launch()