import gradio as gr from transformers import pipeline trans=pipeline("automatic-speech-recognition",model="facebook/wav2vec2-large-xlsr-53-spanish") clasificador=pipeline("text-classification",model="pysentimiento/robertuito-sentiment-analysis") def audio_a_text(audio): text = trans(audio)["text"] return text def texto_a_sentimiento(text): return clasificador(text)[0]["label"] demo=gr.Blocks() with demo: gr.Markdown("Demo para la clase de Platzi") audio=gr.Audio(sources="microphone",type="filepath") texto=gr.Textbox() b1=gr.Button("Transcribe") b1.click(audio2text,inputs=audio,outputs=texto) label=gr.Label() b2=gr.Button("Clasifica el sentimiento") b2.click(text2sentimiento,inputs=texto,outputs=label) demo.launch()