Spaces:
Sleeping
Sleeping
nan-motherboard
commited on
Commit
·
fa77629
1
Parent(s):
d38c13b
final
Browse files- __pycache__/utils.cpython-311.pyc +0 -0
- app.py +50 -2
- utils.py +57 -0
__pycache__/utils.cpython-311.pyc
ADDED
Binary file (3.96 kB). View file
|
|
app.py
CHANGED
@@ -1,4 +1,52 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from utils import generate_summary
|
3 |
|
4 |
+
# Initialize session state variables
|
5 |
+
if "clicked" not in st.session_state:
|
6 |
+
st.session_state.clicked = False
|
7 |
+
if "input_text" not in st.session_state:
|
8 |
+
st.session_state.input_text = ""
|
9 |
+
if "generated_summary" not in st.session_state:
|
10 |
+
st.session_state.generated_summary = ""
|
11 |
+
|
12 |
+
st.title("Dialogue Text Summarization")
|
13 |
+
|
14 |
+
st.write("---")
|
15 |
+
|
16 |
+
height = 200
|
17 |
+
|
18 |
+
# Text area with session state
|
19 |
+
input_text = st.text_area("Dialogue", height=height, key="input_text")
|
20 |
+
|
21 |
+
# Submit button logic
|
22 |
+
if st.button("Submit"):
|
23 |
+
if st.session_state.input_text.strip() == "":
|
24 |
+
st.error("Please enter a dialogue!")
|
25 |
+
else:
|
26 |
+
st.write("---")
|
27 |
+
st.write("## Summary")
|
28 |
+
st_container = st.empty()
|
29 |
+
st_info_container = st.empty()
|
30 |
+
# Generate summary and store it in session state
|
31 |
+
st.session_state.generated_summary = generate_summary(
|
32 |
+
" ".join(st.session_state.input_text.split()),
|
33 |
+
st_container,
|
34 |
+
st_info_container
|
35 |
+
)
|
36 |
+
|
37 |
+
# Display the generated summary
|
38 |
+
if st.session_state.generated_summary:
|
39 |
+
st.write(st.session_state.generated_summary)
|
40 |
+
|
41 |
+
# Clear button logic
|
42 |
+
def clear_all():
|
43 |
+
st.session_state.clicked = True
|
44 |
+
st.session_state.input_text = "" # Clear input text
|
45 |
+
st.session_state.generated_summary = "" # Clear summary
|
46 |
+
|
47 |
+
st.button("Clear", on_click=clear_all)
|
48 |
+
|
49 |
+
# Logic for clearing display
|
50 |
+
if st.session_state.clicked:
|
51 |
+
st.session_state.clicked = False
|
52 |
+
st.experimental_rerun()
|
utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, GenerationConfig, TextStreamer, AutoModelForSeq2SeqLM
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import time
|
5 |
+
|
6 |
+
checkpoint = "Mia2024/CS5100TextSummarization"
|
7 |
+
checkpoint = "facebook/bart-large-cnn"
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
|
11 |
+
class StreamlitTextStreamer(TextStreamer):
|
12 |
+
def __init__(self, tokenizer, st_container, st_info_container, skip_prompt=False, **decode_kwargs):
|
13 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
14 |
+
self.st_container = st_container
|
15 |
+
self.st_info_container = st_info_container
|
16 |
+
self.text = ""
|
17 |
+
self.start_time = None
|
18 |
+
self.first_token_time = None
|
19 |
+
self.total_tokens = 0
|
20 |
+
|
21 |
+
def on_finalized_text(self, text: str, stream_end: bool=False):
|
22 |
+
if self.start_time is None:
|
23 |
+
self.start_time = time.time()
|
24 |
+
|
25 |
+
if self.first_token_time is None and len(text.strip()) > 0:
|
26 |
+
self.first_token_time = time.time()
|
27 |
+
|
28 |
+
self.text += text
|
29 |
+
|
30 |
+
self.total_tokens += len(text.split())
|
31 |
+
self.st_container.markdown("###### " + self.text)
|
32 |
+
time.sleep(0.03)
|
33 |
+
|
34 |
+
|
35 |
+
def generate_summary(input_text, st_container, st_info_container) -> str:
|
36 |
+
generation_config = GenerationConfig(
|
37 |
+
min_new_tokens=10,
|
38 |
+
max_new_tokens=256,
|
39 |
+
temperature=0.9,
|
40 |
+
top_p=1.0,
|
41 |
+
top_k=50
|
42 |
+
)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
44 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint).to(device)
|
45 |
+
prefix = "Summarize the following conversation: \n###\n"
|
46 |
+
suffix = "\n### Summary:"
|
47 |
+
target_length = max(1, int(0.15 * len(input_text.split())))
|
48 |
+
|
49 |
+
input_ids = tokenizer.encode(prefix + input_text + f"The generated summary should be around {target_length} words." + suffix, return_tensors="pt")
|
50 |
+
|
51 |
+
# Initialize the Streamlit container and streamer
|
52 |
+
streamer = StreamlitTextStreamer(tokenizer, st_container, st_info_container, skip_special_tokens=True, decoder_start_token_id=3)
|
53 |
+
|
54 |
+
model.generate(input_ids, streamer=streamer, do_sample=True, generation_config=generation_config)
|
55 |
+
|
56 |
+
|
57 |
+
|