Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -52,6 +52,12 @@ from mem0 import MemoryClient
|
|
52 |
import streamlit as st
|
53 |
from datetime import datetime
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
#====================================SETUP=====================================#
|
56 |
# Fetch secrets from Hugging Face Spaces
|
57 |
api_key = os.environ['api_key']
|
@@ -563,44 +569,89 @@ def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
|
563 |
|
564 |
#============================= Adding Memory to the agent using mem0 ===============================#
|
565 |
|
566 |
-
# NutritionBot class
|
567 |
class NutritionBot:
|
568 |
-
def __init__(self):
|
569 |
"""
|
570 |
-
Initialize the NutritionBot class, setting up memory
|
|
|
|
|
|
|
|
|
571 |
"""
|
|
|
|
|
572 |
|
573 |
# Initialize a memory client to store and retrieve customer interactions
|
574 |
-
self.memory = MemoryClient(api_key="
|
|
|
575 |
|
576 |
-
# Initialize the OpenAI client using the provided credentials
|
577 |
self.client = ChatOpenAI(
|
578 |
-
model_name="gpt-
|
579 |
-
api_key=
|
|
|
|
|
|
|
580 |
)
|
|
|
581 |
|
582 |
-
|
583 |
-
|
|
|
584 |
|
585 |
-
|
586 |
-
|
|
|
587 |
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
-
|
596 |
-
|
597 |
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
|
601 |
def handle_customer_query(self, user_id: str, query: str) -> str:
|
602 |
"""
|
603 |
-
Process a customer's query and provide a response,
|
604 |
|
605 |
Args:
|
606 |
user_id (str): Unique identifier for the customer.
|
@@ -609,15 +660,92 @@ class NutritionBot:
|
|
609 |
Returns:
|
610 |
str: Chatbot's response.
|
611 |
"""
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
try:
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
|
|
|
|
|
|
618 |
except Exception as e:
|
619 |
-
|
620 |
-
|
621 |
|
622 |
#=====================User Interface using streamlit ===========================#
|
623 |
def nutrition_disorder_streamlit():
|
|
|
52 |
import streamlit as st
|
53 |
from datetime import datetime
|
54 |
|
55 |
+
import traceback
|
56 |
+
import time
|
57 |
+
import random
|
58 |
+
from datetime import datetime
|
59 |
+
from typing import Dict, List
|
60 |
+
|
61 |
#====================================SETUP=====================================#
|
62 |
# Fetch secrets from Hugging Face Spaces
|
63 |
api_key = os.environ['api_key']
|
|
|
569 |
|
570 |
#============================= Adding Memory to the agent using mem0 ===============================#
|
571 |
|
|
|
572 |
class NutritionBot:
|
573 |
+
def __init__(self, api_key: str, api_base: str):
|
574 |
"""
|
575 |
+
Initialize the NutritionBot class, setting up memory and the LLM client.
|
576 |
+
|
577 |
+
Args:
|
578 |
+
api_key (str): The OpenAI API key for authenticating requests.
|
579 |
+
api_base (str): The custom OpenAI API base endpoint.
|
580 |
"""
|
581 |
+
print(f"Initializing NutritionBot with OpenAI API key: {api_key}")
|
582 |
+
print(f"Using custom OpenAI API base: {api_base}")
|
583 |
|
584 |
# Initialize a memory client to store and retrieve customer interactions
|
585 |
+
self.memory = MemoryClient(api_key=userdata.get("mem0_api_key"))
|
586 |
+
print("Memory client initialized.")
|
587 |
|
588 |
+
# Initialize the OpenAI client using the provided credentials, custom API base, and model
|
589 |
self.client = ChatOpenAI(
|
590 |
+
model_name="gpt-4o-mini", # Correct model name
|
591 |
+
api_key=api_key,
|
592 |
+
openai_api_base=api_base,
|
593 |
+
temperature=0.7, # Controls randomness in responses
|
594 |
+
verbose=True # Enable verbose logging for debugging
|
595 |
)
|
596 |
+
print("OpenAI client initialized with custom API base and model gpt-4o-mini.")
|
597 |
|
598 |
+
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
|
599 |
+
"""
|
600 |
+
Retrieve past interactions relevant to the current query.
|
601 |
|
602 |
+
Args:
|
603 |
+
user_id (str): Unique identifier for the customer.
|
604 |
+
query (str): The customer's current query.
|
605 |
|
606 |
+
Returns:
|
607 |
+
List[Dict]: A list of relevant past interactions.
|
608 |
+
"""
|
609 |
+
print("Entering get_relevant_history function...")
|
610 |
+
try:
|
611 |
+
history = self.memory.search(
|
612 |
+
query=query,
|
613 |
+
user_id=user_id,
|
614 |
+
limit=3
|
615 |
+
)
|
616 |
+
print("Relevant history retrieved:", history)
|
617 |
+
return history
|
618 |
+
except Exception as e:
|
619 |
+
print(f"Error retrieving history: {e}")
|
620 |
+
traceback.print_exc()
|
621 |
+
return []
|
622 |
+
|
623 |
+
def query_model(self, prompt: str) -> str:
|
624 |
+
"""
|
625 |
+
Query the OpenAI model directly using the prompt.
|
626 |
|
627 |
+
Args:
|
628 |
+
prompt (str): The input prompt for the model.
|
629 |
|
630 |
+
Returns:
|
631 |
+
str: The assistant's response.
|
632 |
+
"""
|
633 |
+
print("Querying the OpenAI model...")
|
634 |
+
try:
|
635 |
+
# Use the correct input format for ChatOpenAI
|
636 |
+
messages = [
|
637 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
638 |
+
{"role": "user", "content": prompt}
|
639 |
+
]
|
640 |
+
response = self.client.invoke(messages) # Use the `invoke()` method
|
641 |
+
print("Raw response from OpenAI API:", response)
|
642 |
+
|
643 |
+
# Since the response is an AIMessage object, extract the content directly
|
644 |
+
content = response.content # Access the `content` property of the AIMessage
|
645 |
+
print("Extracted response content:", content)
|
646 |
+
return content
|
647 |
+
except Exception as e:
|
648 |
+
print(f"Error querying the model: {e}")
|
649 |
+
traceback.print_exc()
|
650 |
+
return "I'm sorry, I couldn't process your request. Please try again later."
|
651 |
|
652 |
def handle_customer_query(self, user_id: str, query: str) -> str:
|
653 |
"""
|
654 |
+
Process a customer's query and provide a response, incorporating past interactions for context.
|
655 |
|
656 |
Args:
|
657 |
user_id (str): Unique identifier for the customer.
|
|
|
660 |
Returns:
|
661 |
str: Chatbot's response.
|
662 |
"""
|
663 |
+
print("Entering handle_customer_query function...")
|
664 |
+
|
665 |
+
# Retrieve relevant history for the user
|
666 |
+
relevant_history = self.get_relevant_history(user_id, query)
|
667 |
+
|
668 |
+
# Build context from past interactions
|
669 |
+
context = "Previous relevant interactions:\n"
|
670 |
+
for memory in relevant_history:
|
671 |
+
context += f"Customer: {memory['query']}\n"
|
672 |
+
context += f"Support: {memory['response']}\n---\n"
|
673 |
+
|
674 |
+
# Create the prompt
|
675 |
+
prompt = f"""
|
676 |
+
Context:
|
677 |
+
{context}
|
678 |
+
|
679 |
+
Current customer query: {query}
|
680 |
+
|
681 |
+
Provide a helpful response that takes into account any relevant past interactions.
|
682 |
+
"""
|
683 |
+
print("Final prompt being sent to the model:")
|
684 |
+
print(prompt)
|
685 |
+
|
686 |
+
# Retry logic with exponential backoff
|
687 |
+
max_retries = 3
|
688 |
+
for attempt in range(max_retries):
|
689 |
+
try:
|
690 |
+
print(f"Querying model (attempt {attempt + 1})...")
|
691 |
+
response_content = self.query_model(prompt)
|
692 |
+
if not response_content:
|
693 |
+
raise ValueError("Model returned an empty response.")
|
694 |
+
|
695 |
+
# Store the interaction
|
696 |
+
self.store_customer_interaction(
|
697 |
+
user_id=user_id,
|
698 |
+
message=query,
|
699 |
+
response=response_content,
|
700 |
+
metadata={"type": "support_query"}
|
701 |
+
)
|
702 |
+
return response_content
|
703 |
+
|
704 |
+
except Exception as e:
|
705 |
+
print(f"Error querying the model (attempt {attempt + 1}): {e}")
|
706 |
+
traceback.print_exc()
|
707 |
+
if attempt < max_retries - 1:
|
708 |
+
wait_time = (2 ** attempt) + random.uniform(0, 1) # Exponential backoff with jitter
|
709 |
+
print(f"Retrying in {wait_time:.2f} seconds...")
|
710 |
+
time.sleep(wait_time)
|
711 |
+
else:
|
712 |
+
return "I'm sorry, I couldn't process your request. Please try again later."
|
713 |
+
|
714 |
+
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
|
715 |
+
"""
|
716 |
+
Store customer interaction in memory for future reference.
|
717 |
+
|
718 |
+
Args:
|
719 |
+
user_id (str): Unique identifier for the customer.
|
720 |
+
message (str): Customer's query or message.
|
721 |
+
response (str): Chatbot's response.
|
722 |
+
metadata (Dict, optional): Additional metadata for the interaction.
|
723 |
+
"""
|
724 |
+
print("Entering store_customer_interaction function...")
|
725 |
+
|
726 |
+
if metadata is None:
|
727 |
+
metadata = {}
|
728 |
+
|
729 |
+
# Add timestamp to metadata
|
730 |
+
metadata["timestamp"] = datetime.now().isoformat()
|
731 |
+
|
732 |
+
# Format the interaction for storage
|
733 |
+
conversation = [
|
734 |
+
{"role": "user", "content": message},
|
735 |
+
{"role": "assistant", "content": response}
|
736 |
+
]
|
737 |
+
|
738 |
try:
|
739 |
+
self.memory.add(
|
740 |
+
conversation,
|
741 |
+
user_id=user_id,
|
742 |
+
output_format="v1.1",
|
743 |
+
metadata=metadata
|
744 |
+
)
|
745 |
+
print("Interaction stored successfully.")
|
746 |
except Exception as e:
|
747 |
+
print(f"Error storing interaction: {e}")
|
748 |
+
traceback.print_exc()
|
749 |
|
750 |
#=====================User Interface using streamlit ===========================#
|
751 |
def nutrition_disorder_streamlit():
|