Update app.py
Browse files
app.py
CHANGED
@@ -15,12 +15,14 @@ def predict_1(SOC: float):
|
|
15 |
prediction = 1.58 + np.exp(-0.07*SOC)
|
16 |
return prediction.round(2)
|
17 |
|
18 |
-
def predict_2(
|
19 |
-
prediction = 2.03 - 0.008
|
20 |
return prediction.round(2)
|
21 |
|
22 |
-
def predict_3(Cy: float,
|
23 |
-
|
|
|
|
|
24 |
return prediction.round(2)
|
25 |
|
26 |
def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
|
@@ -33,7 +35,7 @@ def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float
|
|
33 |
xAlH = eAlH/ECEC
|
34 |
BS1 = (eCa + eMg + eK + eNa)/CEC
|
35 |
BS2 = (eCa + eMg + eK + eNa)/ECEC
|
36 |
-
input_features = np.array([[pH, EC, CCE,
|
37 |
input_features_scale = s_c.transform(input_features)
|
38 |
prediction = rf.predict(input_features_scale)[0].round(2)
|
39 |
return prediction
|
@@ -72,7 +74,7 @@ with gr.Blocks() as demo:
|
|
72 |
|
73 |
submit_1.click(predict_1, inputs=[SOC], outputs=[output])
|
74 |
submit_2.click(predict_2, inputs=[SOC, Cy], outputs=[output])
|
75 |
-
submit_3.click(predict_3, inputs=[SOC, Cy], outputs=[output])
|
76 |
submit_4.click(predict_4, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
|
77 |
|
78 |
demo.launch(share=False, debug=False)
|
|
|
15 |
prediction = 1.58 + np.exp(-0.07*SOC)
|
16 |
return prediction.round(2)
|
17 |
|
18 |
+
def predict_2(SOC: float, Cy: float):
|
19 |
+
prediction = 2.03 - 0.008*Cy - 0.008*SOC
|
20 |
return prediction.round(2)
|
21 |
|
22 |
+
def predict_3(SOC: float, Cy: float, eCa: float, eMg: float eK: float, eAlH: float):
|
23 |
+
ECEC = eCa + eMg + eK + eNa + eAlH
|
24 |
+
xK = eK/ECEC
|
25 |
+
prediction = 1.53 - 0.076*SOC + 0.004*Cy - 2.04*xK
|
26 |
return prediction.round(2)
|
27 |
|
28 |
def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
|
|
|
35 |
xAlH = eAlH/ECEC
|
36 |
BS1 = (eCa + eMg + eK + eNa)/CEC
|
37 |
BS2 = (eCa + eMg + eK + eNa)/ECEC
|
38 |
+
input_features = np.array([[pH, EC, CCE, SOC, Sa, Si, Cy, CEC, ECEC, xCa, xMg, xK, xNa, xAlH, BS1, BS2]])
|
39 |
input_features_scale = s_c.transform(input_features)
|
40 |
prediction = rf.predict(input_features_scale)[0].round(2)
|
41 |
return prediction
|
|
|
74 |
|
75 |
submit_1.click(predict_1, inputs=[SOC], outputs=[output])
|
76 |
submit_2.click(predict_2, inputs=[SOC, Cy], outputs=[output])
|
77 |
+
submit_3.click(predict_3, inputs=[SOC, Cy, eCa, eMg, eK, eAlH], outputs=[output])
|
78 |
submit_4.click(predict_4, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
|
79 |
|
80 |
demo.launch(share=False, debug=False)
|