MiguelCh commited on
Commit
a3d8df2
·
verified ·
1 Parent(s): 4ec5db2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -4
app.py CHANGED
@@ -11,7 +11,19 @@ with open('my-standard-scaler.pkl', 'rb') as file:
11
  s_c = pickle.load(file)
12
 
13
  # Definir la función de predicción
14
- def predict(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
 
 
 
 
 
 
 
 
 
 
 
 
15
  Cy: float, CEC: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float):
16
  ECEC = eCa + eMg + eK + eNa + eAlH
17
  xCa = eCa/ECEC
@@ -47,9 +59,20 @@ with gr.Blocks() as demo:
47
  eCa = gr.Number(label="eCa (--)", value=19.44, interactive=True)
48
  eNa = gr.Number(label="eNa (--)", value=0.15, interactive=True)
49
 
50
- submit = gr.Button(value='Predecir')
 
 
 
 
 
 
 
 
51
  output = gr.Textbox(label=": soil bulk density", interactive=False)
52
-
53
- submit.click(predict, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
 
 
 
54
 
55
  demo.launch(share=False, debug=False)
 
11
  s_c = pickle.load(file)
12
 
13
  # Definir la función de predicción
14
+ def predict_1(SOC: float):
15
+ prediction = 1.58 + np.exp(-0.07*SOC)
16
+ return prediction.round(2)
17
+
18
+ def predict_2(Cy: float, SOC: float):
19
+ prediction = 2.03 − 0.008 * Cy − 0.008 * SOC
20
+ return prediction.round(2)
21
+
22
+ def predict_3(Cy: float, SOC: float):
23
+ prediction = 1.53 − 0.076 * SOC + 0.004 * Cy
24
+ return prediction.round(2)
25
+
26
+ def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
27
  Cy: float, CEC: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float):
28
  ECEC = eCa + eMg + eK + eNa + eAlH
29
  xCa = eCa/ECEC
 
59
  eCa = gr.Number(label="eCa (--)", value=19.44, interactive=True)
60
  eNa = gr.Number(label="eNa (--)", value=0.15, interactive=True)
61
 
62
+ with gr.Row():
63
+ with gr.Column():
64
+ submit_1 = gr.Button(value='Abdelbaki')
65
+ with gr.Column():
66
+ submit_2 = gr.Button(value='Benites')
67
+ with gr.Column():
68
+ submit_3 = gr.Button(value='MLRegression')
69
+ with gr.Column():
70
+ submit_4 = gr.Button(value='Random Forest')
71
  output = gr.Textbox(label=": soil bulk density", interactive=False)
72
+
73
+ submit_1.click(predict_1, inputs=[SOC], outputs=[output])
74
+ submit_2.click(predict_2, inputs=[SOC, Cy], outputs=[output])
75
+ submit_3.click(predict_3, inputs=[SOC, Cy], outputs=[output])
76
+ submit_4.click(predict_4, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
77
 
78
  demo.launch(share=False, debug=False)