MiguelCh commited on
Commit
c5c9dba
verified
1 Parent(s): dfa881a

Commit Random Forest

Browse files
Files changed (4) hide show
  1. app.py +52 -0
  2. model_rf.pkl +3 -0
  3. my-standard-scaler.pkl +3 -0
  4. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pickle
4
+
5
+ # Cargar el modelo
6
+ with open('model_rf.pkl', 'rb') as file:
7
+ rf = pickle.load(file)
8
+
9
+ # Cargar el scaler
10
+ with open('my-standard-scaler.pkl', 'rb') as file:
11
+ s_c = pickle.load(file)
12
+
13
+ # Definir la funci贸n de predicci贸n
14
+ def predict(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float,
15
+ Cy: float, CEC: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float):
16
+ ECEC = eCa + eMg + eK + eNa + eAlH
17
+ xCa = eCa/ECEC
18
+ xMg = eMg/ECEC
19
+ xK = eK/ECEC
20
+ xNa = eNa/ECEC
21
+ xAlH = eAlH/ECEC
22
+ BS1 = (eCa + eMg + eK + eNa)/CEC
23
+ BS2 = (eCa + eMg + eK + eNa)/ECEC
24
+ input_features = np.array([[pH, EC, CCE, SOC, Sa, Si, Cy, CEC, ECEC, xCa, xMg, xK, xNa, xAlH, BS1, BS2]])
25
+ input_features_scale = s_c.transform(input_features)
26
+ prediction = rf.predict(input_features_scale)[0].round(2)
27
+ return prediction
28
+
29
+ # Crear la interfaz Gradio
30
+ with gr.Blocks() as demo:
31
+ gr.Markdown("# Estima tu % de grasa corporal")
32
+
33
+ pH = gr.Number(label="pH (--)", value=7.09, interactive=True)
34
+ EC = gr.Number(label="Ec (--)", value=0.31, interactive=True)
35
+ CCE = gr.Number(label="CCE (--)", value=0.20, interactive=True)
36
+ SOC = gr.Number(label="SOC (--)", value=2.9408, interactive=True)
37
+ Sa = gr.Number(label="Sa (--)", value=45.0, interactive=True)
38
+ Si = gr.Number(label="Si (--)", value=24.0, interactive=True)
39
+ Cy = gr.Number(label="Cy (--)", value=31.0, interactive=True)
40
+ CEC = gr.Number(label="CEC (--)", value=23.52, interactive=True)
41
+ eCa = gr.Number(label="eCa (--)", value=19.44, interactive=True)
42
+ eMg = gr.Number(label="eMg (--)", value=3.47, interactive=True)
43
+ eK = gr.Number(label="eK (--)", value=0.47, interactive=True)
44
+ eNa = gr.Number(label="eNa (--)", value=0.15, interactive=True)
45
+ eAlH = gr.Number(label="eAlH (--)", value=0.0, interactive=True)
46
+
47
+ submit = gr.Button(value='Predecir')
48
+ output = gr.Textbox(label=": soil bulk density", interactive=False)
49
+
50
+ submit.click(predict, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output])
51
+
52
+ demo.launch(share=False, debug=False)
model_rf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6447c0b8d6e28cb88c221fe7b836c9347e5300b12b9bee415d4f3859e04c8744
3
+ size 1015100
my-standard-scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b51a9a34ac7cbc89634d5adfe4d525af82829399542167d08a88b66d21692e01
3
+ size 1012
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==4.38.1
2
+ numpy==1.24.3
3
+ scikit-learn==1.2.2