import gradio as gr import numpy as np import pickle # Cargar el modelo with open('model_rf.pkl', 'rb') as file: rf = pickle.load(file) # Cargar el scaler with open('my-standard-scaler.pkl', 'rb') as file: s_c = pickle.load(file) # Definir la función de predicción def predict_1(SOC: float): prediction = 1.58 + np.exp(-0.07*SOC) return prediction.round(2) def predict_2(SOC: float, Cy: float): prediction = 2.03 - 0.008*Cy - 0.008*SOC return prediction.round(2) def predict_3(SOC: float, Cy: float, eCa: float, eMg: float, eK: float, eAlH: float): ECEC = eCa + eMg + eK + eNa + eAlH xK = eK/ECEC prediction = 1.53 - 0.076*SOC + 0.004*Cy - 2.04*xK return prediction.round(2) def predict_4(pH: float, EC: float, CCE: float, SOC: float, Sa: float, Si: float, Cy: float, CEC: float, eCa: float, eMg: float, eK: float, eNa: float, eAlH: float): ECEC = eCa + eMg + eK + eNa + eAlH xCa = eCa/ECEC xMg = eMg/ECEC xK = eK/ECEC xNa = eNa/ECEC xAlH = eAlH/ECEC BS1 = (eCa + eMg + eK + eNa)/CEC BS2 = (eCa + eMg + eK + eNa)/ECEC input_features = np.array([[pH, EC, CCE, SOC, Sa, Si, Cy, CEC, ECEC, xCa, xMg, xK, xNa, xAlH, BS1, BS2]]) input_features_scale = s_c.transform(input_features) prediction = rf.predict(input_features_scale)[0].round(2) return prediction # Crear la interfaz Gradio with gr.Blocks() as demo: gr.Markdown("# Estima el valor del soil-bulk-density") with gr.Row(): with gr.Column(): pH = gr.Number(label="pH (--)", value=7.09, interactive=True) EC = gr.Number(label="Ec (--)", value=0.31, interactive=True) CCE = gr.Number(label="CCE (--)", value=0.20, interactive=True) eMg = gr.Number(label="eMg (--)", value=3.47, interactive=True) eAlH = gr.Number(label="eAlH (--)", value=0.0, interactive=True) with gr.Column(): SOC = gr.Number(label="SOC (--)", value=2.9408, interactive=True) Sa = gr.Number(label="Sa (--)", value=45.0, interactive=True) Si = gr.Number(label="Si (--)", value=24.0, interactive=True) eK = gr.Number(label="eK (--)", value=0.47, interactive=True) with gr.Column(): Cy = gr.Number(label="Cy (--)", value=31.0, interactive=True) CEC = gr.Number(label="CEC (--)", value=23.52, interactive=True) eCa = gr.Number(label="eCa (--)", value=19.44, interactive=True) eNa = gr.Number(label="eNa (--)", value=0.15, interactive=True) with gr.Row(): with gr.Column(): submit_1 = gr.Button(value='Abdelbaki') with gr.Column(): submit_2 = gr.Button(value='Benites') with gr.Column(): submit_3 = gr.Button(value='MLRegression') with gr.Column(): submit_4 = gr.Button(value='Random Forest') output = gr.Textbox(label=": soil bulk density", interactive=False) submit_1.click(predict_1, inputs=[SOC], outputs=[output]) submit_2.click(predict_2, inputs=[SOC, Cy], outputs=[output]) submit_3.click(predict_3, inputs=[SOC, Cy, eCa, eMg, eK, eAlH], outputs=[output]) submit_4.click(predict_4, inputs=[pH , EC, CCE, SOC, Sa, Si, Cy, CEC, eCa, eMg, eK, eNa, eAlH], outputs=[output]) demo.launch(share=False, debug=False)