File size: 4,851 Bytes
fb40ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import streamlit as st
from langchain.chains import RetrievalQA
from langchain_ollama import ChatOllama
from utils import process_documents, get_retriever
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate

# Custom prompt template
def get_custom_prompt():
    """Define and return the custom prompt template."""
    return ChatPromptTemplate.from_messages([
        SystemMessagePromptTemplate.from_template(
            "Eres un chat educado que lo que busca es proporcionar información al usuario sobre comidas, productos del supermercado Mercadona."

        ),
        HumanMessagePromptTemplate.from_template(
            "Context:\n{context}\n\n"
            "Question: {question}\n\n"
            "Provide a precise and well-structured answer based on the context above. Ensure your response is easy to understand, includes examples where necessary, and is formatted in a way that students can use it for exams. If applicable, ask if the student needs further clarification."
        )
    ])

# Initialize QA Chain
def initialize_qa_chain():
    if not st.session_state.qa_chain and st.session_state.vector_store:
        llm = ChatOllama(model="deepseek-r1:7b", temperature=0.3)
        retriever = get_retriever()
        st.session_state.qa_chain = RetrievalQA.from_chain_type(
            llm,
            retriever=retriever,
            chain_type="stuff",
            chain_type_kwargs={"prompt": get_custom_prompt()}
        )
    return st.session_state.qa_chain

# Initialize the chatbot's memory (session states)
def initialize_session_state():
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "vector_store" not in st.session_state:
        st.session_state.vector_store = None
    if "qa_chain" not in st.session_state:
        st.session_state.qa_chain = None


# Sidebar section
def display_sidebar():
    with st.sidebar:
        # Instructions
        st.markdown("### Instructions")
        st.info("""
        1. Upload PDF documents.
        2. Click 'Create Knowledge Base'.
        3. Once documents are processed, start chatting with the bot!
        """)
        
        # Streamlit file uploader widget
        pdfs = st.file_uploader(
            "Upload PDF documents", 
            type="pdf",
            accept_multiple_files=True  # Allow multiple file uploads
        )
        
        # Action Button for user to kick off the knowledge base creation process
        # Action Button for user to kick off the knowledge base creation process
        if st.button("Create Knowledge Base"):
            if not pdfs:
                st.warning("Please upload PDF documents first!")
                return

            try:
                with st.spinner("Creating knowledge base... This may take a moment."):
                    vector_store = process_documents(pdfs)
                    st.session_state.vector_store = vector_store
                    st.session_state.qa_chain = None  # Reset QA chain when new documents are processed

                st.success("Knowledge base created!")  # Simple success message after completion

            except Exception as e:
                st.error(f"Error processing documents: {str(e)}")  # Show error if something goes wrong



# Chat interface section
def chat_interface():
    st.title("Edumate.ai")
    st.markdown("Your personal textbook AI chatbot powered by Deepseek 1.5B")
    
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    # Handle user input
    if prompt := st.chat_input("Ask about your documents"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        
        with st.chat_message("user"):
            st.markdown(prompt)
        
        with st.chat_message("assistant"):
            message_placeholder = st.empty()

            
            with st.spinner("Fetching information..."):
                try:
                    qa_chain = initialize_qa_chain()
                    
                    if not qa_chain:
                        full_response = "Please create a knowledge base by uploading PDF documents first."
                    else:
                        response = qa_chain.invoke({"query": prompt})
                        full_response = response["result"]
                except Exception as e:
                    full_response = f"Error: {str(e)}"

            
            message_placeholder.markdown(full_response)
        
        st.session_state.messages.append({"role": "assistant", "content": full_response})

# Main function
def main():
    initialize_session_state()
    display_sidebar()
    chat_interface()

if __name__ == "__main__":
    main()