import streamlit as st from langchain.chains import RetrievalQA from langchain_ollama import ChatOllama from utils import process_documents, get_retriever from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate # Custom prompt template def get_custom_prompt(): """Define and return the custom prompt template.""" return ChatPromptTemplate.from_messages([ SystemMessagePromptTemplate.from_template( "Eres un chat educado que lo que busca es proporcionar informaciĆ³n al usuario sobre comidas, productos del supermercado Mercadona." ), HumanMessagePromptTemplate.from_template( "Context:\n{context}\n\n" "Question: {question}\n\n" "Provide a precise and well-structured answer based on the context above. Ensure your response is easy to understand, includes examples where necessary, and is formatted in a way that students can use it for exams. If applicable, ask if the student needs further clarification." ) ]) # Initialize QA Chain def initialize_qa_chain(): if not st.session_state.qa_chain and st.session_state.vector_store: llm = ChatOllama(model="deepseek-r1:7b", temperature=0.3) retriever = get_retriever() st.session_state.qa_chain = RetrievalQA.from_chain_type( llm, retriever=retriever, chain_type="stuff", chain_type_kwargs={"prompt": get_custom_prompt()} ) return st.session_state.qa_chain # Initialize the chatbot's memory (session states) def initialize_session_state(): if "messages" not in st.session_state: st.session_state.messages = [] if "vector_store" not in st.session_state: st.session_state.vector_store = None if "qa_chain" not in st.session_state: st.session_state.qa_chain = None # Sidebar section def display_sidebar(): with st.sidebar: # Instructions st.markdown("### Instructions") st.info(""" 1. Upload PDF documents. 2. Click 'Create Knowledge Base'. 3. Once documents are processed, start chatting with the bot! """) # Streamlit file uploader widget pdfs = st.file_uploader( "Upload PDF documents", type="pdf", accept_multiple_files=True # Allow multiple file uploads ) # Action Button for user to kick off the knowledge base creation process # Action Button for user to kick off the knowledge base creation process if st.button("Create Knowledge Base"): if not pdfs: st.warning("Please upload PDF documents first!") return try: with st.spinner("Creating knowledge base... This may take a moment."): vector_store = process_documents(pdfs) st.session_state.vector_store = vector_store st.session_state.qa_chain = None # Reset QA chain when new documents are processed st.success("Knowledge base created!") # Simple success message after completion except Exception as e: st.error(f"Error processing documents: {str(e)}") # Show error if something goes wrong # Chat interface section def chat_interface(): st.title("Edumate.ai") st.markdown("Your personal textbook AI chatbot powered by Deepseek 1.5B") # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Handle user input if prompt := st.chat_input("Ask about your documents"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() with st.spinner("Fetching information..."): try: qa_chain = initialize_qa_chain() if not qa_chain: full_response = "Please create a knowledge base by uploading PDF documents first." else: response = qa_chain.invoke({"query": prompt}) full_response = response["result"] except Exception as e: full_response = f"Error: {str(e)}" message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) # Main function def main(): initialize_session_state() display_sidebar() chat_interface() if __name__ == "__main__": main()