File size: 6,041 Bytes
7ce9c01
 
 
620dc90
7ce9c01
 
 
 
 
620dc90
7ce9c01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5dee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce9c01
 
 
 
 
 
 
 
 
 
1c6444b
7ce9c01
 
 
 
1c6444b
7ce9c01
 
 
 
 
 
 
 
 
 
1c6444b
7ce9c01
 
 
 
 
 
1c6444b
7ce9c01
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fde92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce9c01
 
 
 
a5fde92
7ce9c01
 
a5fde92
7ce9c01
 
1c6444b
7ce9c01
 
1c6444b
 
 
a5fde92
7ce9c01
 
a5fde92
7ce9c01
 
 
 
 
 
 
 
 
a5fde92
7ce9c01
 
 
 
 
1c6444b
7ce9c01
 
cdc95ff
 
 
 
 
 
7ce9c01
 
 
1c6444b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from pyvox.custom_parser import CustomVoxParser

def load_vox_model(file_path):
    """Load and parse a .vox file"""
    try:
        print(f"Attempting to parse vox file: {file_path}")
        model = CustomVoxParser(file_path).parse()
        print(f"Model parsed successfully")
        
        voxels = model.to_dense()
        print(f"Voxel array shape: {voxels.shape}")
        print(f"Number of non-zero voxels: {np.count_nonzero(voxels)}")
        print(f"Palette size: {len(model.palette)}")
        
        if np.count_nonzero(voxels) == 0:
            print("Warning: No voxels found in the model")
            return None, None
            
        return voxels, model.palette
    except Exception as e:
        print(f"Error in load_vox_model: {str(e)}")
        return None, None

def create_3d_scatter(voxels, palette):
    """Create a 3D scatter plot from voxel data"""
    # Get coordinates and color indices of non-zero voxels
    x, y, z = np.nonzero(voxels)
    color_indices = voxels[x, y, z] - 1  # Subtract 1 since palette indices in .vox start at 1
    
    # Apply rotations: first 90 degrees in X, then 180 degrees in Z
    # Convert to radians
    theta_x = np.pi / 2  # 90 degrees
    theta_z = np.pi      # 180 degrees
    
    # First rotation around X axis
    y_rot = y * np.cos(theta_x) - z * np.sin(theta_x)
    z_rot = y * np.sin(theta_x) + z * np.cos(theta_x)
    y, z = y_rot, z_rot
    
    # Then rotation around Z axis
    x_rot = x * np.cos(theta_z) - y * np.sin(theta_z)
    y_rot = x * np.sin(theta_z) + y * np.cos(theta_z)
    x, y = x_rot, y_rot
    
    
    # Convert palette indices to RGB colors using direct palette indexing
    rgb_colors = [f'rgb({int(palette[c][0])}, {int(palette[c][1])}, {int(palette[c][2])})' 
                 if c < len(palette) else 'rgb(255, 255, 255)' for c in color_indices]
    
    # Create 3D scatter plot with improved voxel representation
    fig = go.Figure(data=[go.Scatter3d(
        x=x, y=y, z=z,
        mode='markers',
        marker=dict(
            size=6, 
            color=rgb_colors,
            opacity=1.0,
            symbol='square',  # Using square symbol (supported by Plotly)
            line=dict(width=0),  # Remove border lines completely
            sizemode='diameter', 
            sizeref=1.0  # Reference scale for consistent size
        )
    )])
    
    # Calculate center and range for better camera positioning
    center_x = (x.max() + x.min()) / 2
    center_y = (y.max() + y.min()) / 2
    center_z = (z.max() + z.min()) / 2
    max_range = max(x.max() - x.min(), y.max() - y.min(), z.max() - z.min())
    
    # better visualization
    fig.update_layout(
        scene=dict(
            aspectmode='cube',  # Force cubic aspect ratio
            camera=dict(
                up=dict(x=0, y=1, z=0),
                center=dict(x=0, y=0, z=0),
                eye=dict(x=1.5, y=0.9, z=0.9) 
            ),
            xaxis=dict(range=[center_x - max_range/1.5, center_x + max_range/1.5], showgrid=True, gridwidth=1, gridcolor='rgba(128, 128, 128, 0.2)'),
            yaxis=dict(range=[center_y - max_range/1.5, center_y + max_range/1.5], showgrid=True, gridwidth=1, gridcolor='rgba(128, 128, 128, 0.2)'),
            zaxis=dict(range=[center_z - max_range/1.5, center_z + max_range/1.5], showgrid=True, gridwidth=1, gridcolor='rgba(128, 128, 128, 0.2)')
        ),
        margin=dict(l=0, r=0, t=0, b=0),
        showlegend=False,
        template='plotly_dark',  # Dark theme for better contrast
        paper_bgcolor='rgba(0,0,0,1)',  # Pure black background
        plot_bgcolor='rgba(0,0,0,1)'
    )
    
    return fig

def create_error_figure(message):
    """Helper function to create error figures with consistent styling"""
    fig = go.Figure()
    fig.add_annotation(
        text=message,
        xref="paper", yref="paper",
        x=0.5, y=0.5,
        showarrow=False,
        font=dict(size=16, color="white")
    )
    fig.update_layout(
        paper_bgcolor='rgba(0,0,0,1)',
        plot_bgcolor='rgba(0,0,0,1)'
    )
    return fig

def display_vox_model(vox_file):
    """Main function to display the voxel model"""
    try:
        if not vox_file:
            return create_error_figure("Please upload a .vox file")
        
        if not vox_file.name.endswith('.vox'):
            return create_error_figure("Please upload a valid .vox file")
        
        print(f"Loading vox file: {vox_file.name}")
        voxels, palette = load_vox_model(vox_file.temp_path if hasattr(vox_file, 'temp_path') else vox_file.name)
        
        if voxels is None or palette is None:
            error_message = "Error: Could not load voxel data from file\n"
            error_message += "This might be due to version incompatibility.\n"
            error_message += "The viewer currently supports .vox files up to version 200."
            return create_error_figure(error_message)
        
        if voxels.size == 0:
            return create_error_figure("Error: No voxels found in the model")
        
        print(f"Model loaded successfully. Shape: {voxels.shape}, Palette size: {len(palette)}")
        
        # Create the 3D visualization
        fig = create_3d_scatter(voxels, palette)
        
        return fig
    except Exception as e:
        print(f"Error details: {str(e)}")
        return create_error_figure(f"Error loading model: {str(e)}")

# Create Gradio interface
interface = gr.Interface(
    fn=display_vox_model,
    inputs=gr.File(label="Upload .vox file"),
    outputs=gr.Plot(label="3D Voxel Model"),  # Remove the type parameter
    title="Voxel Model Viewer",
    description="Upload a .vox file to view the 3D voxelized model.",
    examples=[
        ["examples/modelo_optimizado.vox"],
        ["examples/Poster.vox"],
        ["examples/Horse.vox"]
    ],
    cache_examples=True  # Enable caching to ensure examples work properly
)

if __name__ == "__main__":
    interface.launch()