|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
import torch.utils.data.distributed |
|
from torch import nn |
|
|
|
|
|
class ResNet_G(nn.Module): |
|
|
|
def __init__(self, data_dim, z_dim, size, nfilter=64, nfilter_max=512, bn=True, res_ratio=0.1, **kwargs): |
|
super().__init__() |
|
self.input_dim = z_dim |
|
self.output_dim = z_dim |
|
self.dropout_rate = 0 |
|
|
|
s0 = self.s0 = 4 |
|
nf = self.nf = nfilter |
|
nf_max = self.nf_max = nfilter_max |
|
self.bn = bn |
|
self.z_dim = z_dim |
|
|
|
|
|
nlayers = int(np.log2(size / s0)) |
|
self.nf0 = min(nf_max, nf * 2 ** (nlayers + 1)) |
|
|
|
self.fc = nn.Linear(z_dim, self.nf0 * s0 * s0) |
|
if self.bn: |
|
self.bn1d = nn.BatchNorm1d(self.nf0 * s0 * s0) |
|
self.relu = nn.LeakyReLU(0.2, inplace=True) |
|
|
|
blocks = [] |
|
for i in range(nlayers, 0, -1): |
|
nf0 = min(nf * 2 ** (i + 1), nf_max) |
|
nf1 = min(nf * 2 ** i, nf_max) |
|
blocks += [ |
|
ResNetBlock(nf0, nf1, bn=self.bn, res_ratio=res_ratio), |
|
nn.Upsample(scale_factor=2) |
|
] |
|
|
|
nf0 = min(nf * 2, nf_max) |
|
nf1 = min(nf, nf_max) |
|
blocks += [ |
|
ResNetBlock(nf0, nf1, bn=self.bn, res_ratio=res_ratio), |
|
ResNetBlock(nf1, nf1, bn=self.bn, res_ratio=res_ratio) |
|
] |
|
|
|
self.resnet = nn.Sequential(*blocks) |
|
self.conv_img = nn.Conv2d(nf, 3, 3, padding=1) |
|
|
|
self.fc_out = nn.Linear(3 * size * size, data_dim) |
|
|
|
def forward(self, z, return_intermediate=False): |
|
|
|
batch_size = z.size(0) |
|
|
|
out = self.fc(z) |
|
if self.bn: |
|
out = self.bn1d(out) |
|
out = self.relu(out) |
|
if return_intermediate: |
|
l_1 = out.detach().clone() |
|
out = out.view(batch_size, self.nf0, self.s0, self.s0) |
|
|
|
|
|
out = self.resnet(out) |
|
|
|
|
|
|
|
|
|
out = self.conv_img(out) |
|
out = self.relu(out) |
|
out.flatten(1) |
|
out = self.fc_out(out.flatten(1)) |
|
|
|
if return_intermediate: |
|
return out, l_1 |
|
return out |
|
|
|
def sample_latent(self, n_samples, z_size, temperature): |
|
return torch.randn((n_samples, z_size)) * temperature |
|
|
|
|
|
class ResNet_D(nn.Module): |
|
|
|
def __init__(self, data_dim, size, nfilter=64, nfilter_max=512, res_ratio=0.1): |
|
super().__init__() |
|
s0 = self.s0 = 4 |
|
nf = self.nf = nfilter |
|
nf_max = self.nf_max = nfilter_max |
|
self.size = size |
|
|
|
|
|
nlayers = int(np.log2(size / s0)) |
|
self.nf0 = min(nf_max, nf * 2 ** nlayers) |
|
|
|
nf0 = min(nf, nf_max) |
|
nf1 = min(nf * 2, nf_max) |
|
blocks = [ |
|
ResNetBlock(nf0, nf0, bn=False, res_ratio=res_ratio), |
|
ResNetBlock(nf0, nf1, bn=False, res_ratio=res_ratio) |
|
] |
|
|
|
self.fc_input = nn.Linear(data_dim, 3 * size * size) |
|
|
|
for i in range(1, nlayers + 1): |
|
nf0 = min(nf * 2 ** i, nf_max) |
|
nf1 = min(nf * 2 ** (i + 1), nf_max) |
|
blocks += [ |
|
nn.AvgPool2d(3, stride=2, padding=1), |
|
ResNetBlock(nf0, nf1, bn=False, res_ratio=res_ratio), |
|
] |
|
|
|
self.conv_img = nn.Conv2d(3, 1 * nf, 3, padding=1) |
|
self.relu = nn.LeakyReLU(0.2, inplace=True) |
|
self.resnet = nn.Sequential(*blocks) |
|
|
|
self.fc = nn.Linear(self.nf0 * s0 * s0, 1) |
|
|
|
def forward(self, x): |
|
batch_size = x.size(0) |
|
|
|
out = self.fc_input(x) |
|
out = self.relu(out).view(batch_size, 3, self.size, self.size) |
|
|
|
out = self.relu((self.conv_img(out))) |
|
out = self.resnet(out) |
|
out = out.view(batch_size, self.nf0 * self.s0 * self.s0) |
|
out = self.fc(out) |
|
|
|
return out |
|
|
|
|
|
class ResNetBlock(nn.Module): |
|
|
|
def __init__(self, fin, fout, fhidden=None, bn=True, res_ratio=0.1): |
|
super().__init__() |
|
|
|
self.bn = bn |
|
self.is_bias = not bn |
|
self.learned_shortcut = (fin != fout) |
|
self.fin = fin |
|
self.fout = fout |
|
if fhidden is None: |
|
self.fhidden = min(fin, fout) |
|
else: |
|
self.fhidden = fhidden |
|
self.res_ratio = res_ratio |
|
|
|
|
|
self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1, bias=self.is_bias) |
|
if self.bn: |
|
self.bn2d_0 = nn.BatchNorm2d(self.fhidden) |
|
self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=self.is_bias) |
|
if self.bn: |
|
self.bn2d_1 = nn.BatchNorm2d(self.fout) |
|
if self.learned_shortcut: |
|
self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False) |
|
if self.bn: |
|
self.bn2d_s = nn.BatchNorm2d(self.fout) |
|
self.relu = nn.LeakyReLU(0.2, inplace=True) |
|
|
|
def forward(self, x): |
|
x_s = self._shortcut(x) |
|
dx = self.conv_0(x) |
|
if self.bn: |
|
dx = self.bn2d_0(dx) |
|
dx = self.relu(dx) |
|
dx = self.conv_1(dx) |
|
if self.bn: |
|
dx = self.bn2d_1(dx) |
|
out = self.relu(x_s + self.res_ratio * dx) |
|
return out |
|
|
|
def _shortcut(self, x): |
|
if self.learned_shortcut: |
|
x_s = self.conv_s(x) |
|
if self.bn: |
|
x_s = self.bn2d_s(x_s) |
|
else: |
|
x_s = x |
|
return x_s |
|
|