|
""" |
|
MIT Licensed Code |
|
|
|
Copyright (c) 2022 Aaron (Yinghao) Li |
|
|
|
https://github.com/yl4579/StyleTTS/blob/main/models.py |
|
""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn.utils import spectral_norm |
|
|
|
|
|
class StyleEncoder(nn.Module): |
|
def __init__(self, dim_in=128, style_dim=64, max_conv_dim=384): |
|
super().__init__() |
|
blocks = [] |
|
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] |
|
|
|
repeat_num = 4 |
|
for _ in range(repeat_num): |
|
dim_out = min(dim_in * 2, max_conv_dim) |
|
blocks += [ResBlk(dim_in, dim_out, downsample='half')] |
|
dim_in = dim_out |
|
|
|
blocks += [nn.LeakyReLU(0.2)] |
|
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] |
|
blocks += [nn.AdaptiveAvgPool2d(1)] |
|
blocks += [nn.LeakyReLU(0.2)] |
|
self.shared = nn.Sequential(*blocks) |
|
|
|
self.unshared = nn.Linear(dim_out, style_dim) |
|
|
|
def forward(self, speech): |
|
h = self.shared(speech.unsqueeze(1)) |
|
h = h.view(h.size(0), -1) |
|
s = self.unshared(h) |
|
|
|
return s |
|
|
|
|
|
class ResBlk(nn.Module): |
|
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), |
|
normalize=False, downsample='none'): |
|
super().__init__() |
|
self.actv = actv |
|
self.normalize = normalize |
|
self.downsample = DownSample(downsample) |
|
self.downsample_res = LearnedDownSample(downsample, dim_in) |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out) |
|
|
|
def _build_weights(self, dim_in, dim_out): |
|
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) |
|
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) |
|
if self.normalize: |
|
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) |
|
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) |
|
if self.learned_sc: |
|
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def _shortcut(self, x): |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
if self.downsample: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def _residual(self, x): |
|
if self.normalize: |
|
x = self.norm1(x) |
|
x = self.actv(x) |
|
x = self.conv1(x) |
|
x = self.downsample_res(x) |
|
if self.normalize: |
|
x = self.norm2(x) |
|
x = self.actv(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._shortcut(x) + self._residual(x) |
|
return x / math.sqrt(2) |
|
|
|
|
|
class LearnedDownSample(nn.Module): |
|
def __init__(self, layer_type, dim_in): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
if self.layer_type == 'none': |
|
self.conv = nn.Identity() |
|
elif self.layer_type == 'timepreserve': |
|
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) |
|
elif self.layer_type == 'half': |
|
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class LearnedUpSample(nn.Module): |
|
def __init__(self, layer_type, dim_in): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
if self.layer_type == 'none': |
|
self.conv = nn.Identity() |
|
elif self.layer_type == 'timepreserve': |
|
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) |
|
elif self.layer_type == 'half': |
|
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) |
|
else: |
|
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class DownSample(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
elif self.layer_type == 'timepreserve': |
|
return F.avg_pool2d(x, (2, 1)) |
|
elif self.layer_type == 'half': |
|
if x.shape[-1] % 2 != 0: |
|
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) |
|
return F.avg_pool2d(x, 2) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
|
|
class UpSample(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
elif self.layer_type == 'timepreserve': |
|
return F.interpolate(x, scale_factor=(2, 1), mode='nearest') |
|
elif self.layer_type == 'half': |
|
return F.interpolate(x, scale_factor=2, mode='nearest') |
|
else: |
|
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|