|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from Modules.GeneralLayers.ConditionalLayerNorm import AdaIN1d |
|
from Modules.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm |
|
from Modules.GeneralLayers.LayerNorm import LayerNorm |
|
from Utility.utils import integrate_with_utt_embed |
|
|
|
|
|
class DurationPredictor(torch.nn.Module): |
|
""" |
|
Duration predictor module. |
|
|
|
This is a module of duration predictor described |
|
in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. |
|
The duration predictor predicts a duration of each frame in log domain |
|
from the hidden embeddings of encoder. |
|
|
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: |
|
https://arxiv.org/pdf/1905.09263.pdf |
|
|
|
Note: |
|
The calculation domain of outputs is different |
|
between in `forward` and in `inference`. In `forward`, |
|
the outputs are calculated in log domain but in `inference`, |
|
those are calculated in linear domain. |
|
|
|
""" |
|
|
|
def __init__(self, idim, |
|
n_layers=2, |
|
n_chans=384, |
|
kernel_size=3, |
|
dropout_rate=0.1, |
|
offset=1.0, |
|
utt_embed_dim=None, |
|
embedding_integration="AdaIN"): |
|
""" |
|
Initialize duration predictor module. |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
n_layers (int, optional): Number of convolutional layers. |
|
n_chans (int, optional): Number of channels of convolutional layers. |
|
kernel_size (int, optional): Kernel size of convolutional layers. |
|
dropout_rate (float, optional): Dropout rate. |
|
offset (float, optional): Offset value to avoid nan in log domain. |
|
|
|
""" |
|
super(DurationPredictor, self).__init__() |
|
self.offset = offset |
|
self.conv = torch.nn.ModuleList() |
|
self.dropouts = torch.nn.ModuleList() |
|
self.norms = torch.nn.ModuleList() |
|
self.embedding_projections = torch.nn.ModuleList() |
|
self.utt_embed_dim = utt_embed_dim |
|
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] |
|
|
|
for idx in range(n_layers): |
|
if utt_embed_dim is not None: |
|
if embedding_integration == "AdaIN": |
|
self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)] |
|
elif embedding_integration == "ConditionalLayerNorm": |
|
self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)] |
|
else: |
|
self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)] |
|
else: |
|
self.embedding_projections += [lambda x: x] |
|
in_chans = idim if idx == 0 else n_chans |
|
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), |
|
torch.nn.ReLU())] |
|
self.norms += [LayerNorm(n_chans, dim=1)] |
|
self.dropouts += [torch.nn.Dropout(dropout_rate)] |
|
|
|
self.linear = torch.nn.Linear(n_chans, 1) |
|
|
|
def _forward(self, xs, x_masks=None, is_inference=False, utt_embed=None): |
|
xs = xs.transpose(1, -1) |
|
|
|
for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections): |
|
xs = f(xs) |
|
if self.utt_embed_dim is not None: |
|
xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2) |
|
xs = c(xs) |
|
xs = d(xs) |
|
|
|
|
|
xs = self.linear(xs.transpose(1, -1)).squeeze(-1) |
|
|
|
if is_inference: |
|
|
|
xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() |
|
else: |
|
xs = xs.masked_fill(x_masks, 0.0) |
|
|
|
return xs |
|
|
|
def forward(self, xs, padding_mask=None, utt_embed=None): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
xs (Tensor): Batch of input sequences (B, Tmax, idim). |
|
padding_mask (ByteTensor, optional): |
|
Batch of masks indicating padded part (B, Tmax). |
|
|
|
Returns: |
|
Tensor: Batch of predicted durations in log domain (B, Tmax). |
|
|
|
""" |
|
return self._forward(xs, padding_mask, False, utt_embed=utt_embed) |
|
|
|
def inference(self, xs, padding_mask=None, utt_embed=None): |
|
""" |
|
Inference duration. |
|
|
|
Args: |
|
xs (Tensor): Batch of input sequences (B, Tmax, idim). |
|
padding_mask (ByteTensor, optional): |
|
Batch of masks indicating padded part (B, Tmax). |
|
|
|
Returns: |
|
LongTensor: Batch of predicted durations in linear domain (B, Tmax). |
|
|
|
""" |
|
return self._forward(xs, padding_mask, True, utt_embed=utt_embed) |
|
|
|
|
|
class DurationPredictorLoss(torch.nn.Module): |
|
""" |
|
Loss function module for duration predictor. |
|
|
|
The loss value is Calculated in log domain to make it Gaussian. |
|
|
|
""" |
|
|
|
def __init__(self, offset=1.0, reduction="mean"): |
|
""" |
|
Args: |
|
offset (float, optional): Offset value to avoid nan in log domain. |
|
reduction (str): Reduction type in loss calculation. |
|
|
|
""" |
|
super(DurationPredictorLoss, self).__init__() |
|
self.criterion = torch.nn.MSELoss(reduction=reduction) |
|
self.offset = offset |
|
|
|
def forward(self, outputs, targets): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
outputs (Tensor): Batch of prediction durations in log domain (B, T) |
|
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T) |
|
|
|
Returns: |
|
Tensor: Mean squared error loss value. |
|
|
|
Note: |
|
`outputs` is in log domain but `targets` is in linear domain. |
|
|
|
""" |
|
|
|
targets = torch.log(targets.float() + self.offset) |
|
loss = self.criterion(outputs, targets) |
|
|
|
return loss |
|
|