|
|
|
|
|
|
|
|
|
from abc import ABC |
|
|
|
import torch |
|
|
|
from Modules.GeneralLayers.ConditionalLayerNorm import AdaIN1d |
|
from Modules.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm |
|
from Modules.GeneralLayers.LayerNorm import LayerNorm |
|
from Utility.utils import integrate_with_utt_embed |
|
|
|
|
|
class VariancePredictor(torch.nn.Module, ABC): |
|
""" |
|
Variance predictor module. |
|
|
|
This is a module of variance predictor described in `FastSpeech 2: |
|
Fast and High-Quality End-to-End Text to Speech`_. |
|
|
|
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: |
|
https://arxiv.org/abs/2006.04558 |
|
|
|
""" |
|
|
|
def __init__(self, |
|
idim, |
|
n_layers=2, |
|
n_chans=384, |
|
kernel_size=3, |
|
bias=True, |
|
dropout_rate=0.5, |
|
utt_embed_dim=None, |
|
embedding_integration="AdaIN"): |
|
""" |
|
Initialize duration predictor module. |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
n_layers (int, optional): Number of convolutional layers. |
|
n_chans (int, optional): Number of channels of convolutional layers. |
|
kernel_size (int, optional): Kernel size of convolutional layers. |
|
dropout_rate (float, optional): Dropout rate. |
|
""" |
|
super().__init__() |
|
self.conv = torch.nn.ModuleList() |
|
self.dropouts = torch.nn.ModuleList() |
|
self.norms = torch.nn.ModuleList() |
|
self.embedding_projections = torch.nn.ModuleList() |
|
self.utt_embed_dim = utt_embed_dim |
|
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] |
|
|
|
for idx in range(n_layers): |
|
if utt_embed_dim is not None: |
|
if embedding_integration == "AdaIN": |
|
self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)] |
|
elif embedding_integration == "ConditionalLayerNorm": |
|
self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)] |
|
else: |
|
self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)] |
|
else: |
|
self.embedding_projections += [lambda x: x] |
|
in_chans = idim if idx == 0 else n_chans |
|
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), |
|
torch.nn.ReLU())] |
|
self.norms += [LayerNorm(n_chans, dim=1)] |
|
self.dropouts += [torch.nn.Dropout(dropout_rate)] |
|
|
|
self.linear = torch.nn.Linear(n_chans, 1) |
|
|
|
def forward(self, xs, padding_mask=None, utt_embed=None): |
|
""" |
|
Calculate forward propagation. |
|
|
|
Args: |
|
xs (Tensor): Batch of input sequences (B, Tmax, idim). |
|
padding_mask (ByteTensor, optional): |
|
Batch of masks indicating padded part (B, Tmax). |
|
|
|
Returns: |
|
Tensor: Batch of predicted sequences (B, Tmax, 1). |
|
""" |
|
xs = xs.transpose(1, -1) |
|
|
|
for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections): |
|
xs = f(xs) |
|
if self.utt_embed_dim is not None: |
|
xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2) |
|
xs = c(xs) |
|
xs = d(xs) |
|
|
|
xs = self.linear(xs.transpose(1, 2)) |
|
|
|
if padding_mask is not None: |
|
xs = xs.masked_fill(padding_mask, 0.0) |
|
|
|
return xs |
|
|