|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def weights_init_D(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') |
|
elif classname.find('BatchNorm') != -1: |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
class SpectrogramDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.D = DiscriminatorNet() |
|
self.D.apply(weights_init_D) |
|
|
|
def _generator_feedback(self, data_generated, data_real): |
|
for p in self.D.parameters(): |
|
p.requires_grad = False |
|
|
|
score_fake, fmap_fake = self.D(data_generated) |
|
_, fmap_real = self.D(data_real) |
|
|
|
feature_matching_loss = 0.0 |
|
for feat_fake, feat_real in zip(fmap_fake, fmap_real): |
|
feature_matching_loss += nn.functional.l1_loss(feat_fake, feat_real.detach()) |
|
|
|
discr_loss = nn.functional.mse_loss(input=score_fake, target=torch.ones(score_fake.shape, device=score_fake.device), reduction="mean") |
|
|
|
return feature_matching_loss + discr_loss |
|
|
|
def _discriminator_feature_matching(self, data_generated, data_real): |
|
for p in self.D.parameters(): |
|
p.requires_grad = True |
|
self.D.train() |
|
|
|
score_fake, _ = self.D(data_generated) |
|
score_real, _ = self.D(data_real) |
|
|
|
discr_loss = 0.0 |
|
discr_loss = discr_loss + nn.functional.mse_loss(input=score_fake, target=torch.zeros(score_fake.shape, device=score_fake.device), reduction="mean") |
|
discr_loss = discr_loss + nn.functional.mse_loss(input=score_real, target=torch.ones(score_real.shape, device=score_real.device), reduction="mean") |
|
|
|
return discr_loss |
|
|
|
def calc_discriminator_loss(self, data_generated, data_real): |
|
return self._discriminator_feature_matching(data_generated.detach(), data_real) |
|
|
|
def calc_generator_feedback(self, data_generated, data_real): |
|
return self._generator_feedback(data_generated, data_real) |
|
|
|
|
|
class DiscriminatorNet(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.filters = nn.ModuleList([ |
|
nn.utils.weight_norm(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), |
|
nn.utils.weight_norm(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), |
|
nn.utils.weight_norm(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), |
|
nn.utils.weight_norm(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))), |
|
nn.utils.weight_norm(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))), |
|
]) |
|
|
|
self.out = nn.utils.weight_norm(nn.Conv2d(32, 1, 3, 1, 1)) |
|
|
|
self.fc = nn.Linear(900, 1) |
|
|
|
def forward(self, y): |
|
feature_maps = list() |
|
feature_maps.append(y) |
|
for d in self.filters: |
|
y = d(y) |
|
feature_maps.append(y) |
|
y = nn.functional.leaky_relu(y, 0.1) |
|
y = self.out(y) |
|
feature_maps.append(y) |
|
y = torch.flatten(y, 1, -1) |
|
y = self.fc(y) |
|
|
|
return y, feature_maps |
|
|
|
|
|
if __name__ == '__main__': |
|
d = SpectrogramDiscriminator() |
|
fake = torch.randn([2, 100, 72]) |
|
real = torch.randn([2, 100, 72]) |
|
|
|
critic_loss = d.calc_discriminator_loss((fake.unsqueeze(1)), real.unsqueeze(1)) |
|
generator_loss = d.calc_generator_feedback(fake.unsqueeze(1), real.unsqueeze(1)) |
|
print(critic_loss) |
|
print(generator_loss) |
|
|