|
""" |
|
Taken from ESPNet |
|
Adapted by Flux |
|
""" |
|
|
|
import torch |
|
|
|
from Modules.GeneralLayers.DurationPredictor import DurationPredictorLoss |
|
from Utility.utils import make_non_pad_mask |
|
|
|
|
|
class ToucanTTSLoss(torch.nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.l1_criterion = torch.nn.L1Loss(reduction="none") |
|
self.l2_criterion = torch.nn.MSELoss(reduction="none") |
|
self.duration_criterion = DurationPredictorLoss(reduction="none") |
|
|
|
def forward(self, predicted_features, gold_features, features_lengths, text_lengths, gold_durations, predicted_durations, predicted_pitch, predicted_energy, gold_pitch, gold_energy): |
|
""" |
|
Args: |
|
predicted_features (Tensor): Batch of outputs before postnets (B, Lmax, odim). |
|
gold_features (Tensor): Batch of target features (B, Lmax, odim). |
|
features_lengths (LongTensor): Batch of the lengths of each target (B,). |
|
gold_durations (LongTensor): Batch of durations (B, Tmax). |
|
gold_pitch (LongTensor): Batch of pitch (B, Tmax). |
|
gold_energy (LongTensor): Batch of energy (B, Tmax). |
|
predicted_durations (LongTensor): Batch of outputs of duration predictor (B, Tmax). |
|
predicted_pitch (LongTensor): Batch of outputs of pitch predictor (B, Tmax). |
|
predicted_energy (LongTensor): Batch of outputs of energy predictor (B, Tmax). |
|
text_lengths (LongTensor): Batch of the lengths of each input (B,). |
|
|
|
Returns: |
|
Tensor: L1 loss value. |
|
Tensor: Duration loss value |
|
""" |
|
|
|
|
|
distance_loss = self.l1_criterion(predicted_features, gold_features) |
|
duration_loss = self.duration_criterion(predicted_durations, gold_durations) |
|
pitch_loss = self.l2_criterion(predicted_pitch, gold_pitch) |
|
energy_loss = self.l2_criterion(predicted_energy, gold_energy) |
|
|
|
|
|
out_masks = make_non_pad_mask(features_lengths).unsqueeze(-1).to(gold_features.device) |
|
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float() |
|
out_weights /= gold_features.size(0) * gold_features.size(-1) |
|
duration_masks = make_non_pad_mask(text_lengths).to(gold_features.device) |
|
duration_weights = (duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float()) |
|
variance_masks = duration_masks.unsqueeze(-1) |
|
variance_weights = duration_weights.unsqueeze(-1) |
|
|
|
|
|
distance_loss = distance_loss.mul(out_weights).masked_select(out_masks).sum() |
|
duration_loss = (duration_loss.mul(duration_weights).masked_select(duration_masks).sum()) |
|
pitch_loss = pitch_loss.mul(variance_weights).masked_select(variance_masks).sum() |
|
energy_loss = (energy_loss.mul(variance_weights).masked_select(variance_masks).sum()) |
|
|
|
return distance_loss, duration_loss, pitch_loss, energy_loss |
|
|