|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import AvgPool1d |
|
from torch.nn import Conv1d |
|
from torch.nn import Conv2d |
|
from torch.nn import ConvTranspose1d |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils import spectral_norm |
|
from torch.nn.utils import weight_norm |
|
|
|
from Preprocessing.Codec.utils import get_padding |
|
from Preprocessing.Codec.utils import init_weights |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.h = h |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))), weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))), weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.h = h |
|
self.convs = nn.ModuleList([ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c(xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class Generator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Generator, self).__init__() |
|
self.h = h |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
self.conv_pre = weight_norm( |
|
Conv1d(512, h.upsample_initial_channel, 7, 1, padding=3)) |
|
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, |
|
k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
h.upsample_initial_channel // (2 ** i), |
|
h.upsample_initial_channel // (2 ** (i + 1)), |
|
k, |
|
u, |
|
|
|
padding=(k - u) // 2, |
|
|
|
))) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.conv_pre(x) |
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
|
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, |
|
use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
32, (kernel_size, 1), (stride, 1), |
|
padding=(get_padding(5, 1), 0))), |
|
norm_f( |
|
Conv2d( |
|
32, |
|
128, (kernel_size, 1), (stride, 1), |
|
padding=(get_padding(5, 1), 0))), |
|
norm_f( |
|
Conv2d( |
|
128, |
|
512, (kernel_size, 1), (stride, 1), |
|
padding=(get_padding(5, 1), 0))), |
|
norm_f( |
|
Conv2d( |
|
512, |
|
1024, (kernel_size, 1), (stride, 1), |
|
padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), |
|
]) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorP(2), |
|
DiscriminatorP(3), |
|
DiscriminatorP(5), |
|
DiscriminatorP(7), |
|
DiscriminatorP(11), |
|
]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv1d(1, 128, 15, 1, padding=7)), |
|
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), |
|
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
]) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiScaleDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super(MultiScaleDiscriminator, self).__init__() |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorS(use_spectral_norm=True), |
|
DiscriminatorS(), |
|
DiscriminatorS(), |
|
]) |
|
self.meanpools = nn.ModuleList( |
|
[AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
if i != 0: |
|
y = self.meanpools[i - 1](y) |
|
y_hat = self.meanpools[i - 1](y_hat) |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss * 2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean((1 - dr) ** 2) |
|
g_loss = torch.mean(dg ** 2) |
|
loss += (r_loss + g_loss) |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean((1 - dg) ** 2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
class Encoder(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Encoder, self).__init__() |
|
self.h = h |
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
self.conv_pre = weight_norm(Conv1d(1, 32, 7, 1, padding=3)) |
|
self.normalize = nn.ModuleList() |
|
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 |
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate( |
|
list( |
|
reversed( |
|
list(zip(h.upsample_rates, h.upsample_kernel_sizes))))): |
|
self.ups.append( |
|
weight_norm( |
|
Conv1d( |
|
32 * (2 ** i), |
|
32 * (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=((k - u) // 2) |
|
|
|
))) |
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = 32 * (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip( |
|
list(reversed(h.resblock_kernel_sizes)), |
|
list(reversed(h.resblock_dilation_sizes)))): |
|
self.resblocks.append(resblock(h, ch, k, d)) |
|
self.normalize.append( |
|
torch.nn.GroupNorm(ch // 16, ch, eps=1e-6, affine=True)) |
|
self.conv_post = Conv1d(512, 512, 3, 1, padding=1) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.conv_pre(x) |
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
x = self.ups[i](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
xs = self.normalize[i * self.num_kernels + j](xs) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
xs = self.normalize[i * self.num_kernels + j](xs) |
|
x = xs / self.num_kernels |
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
|
|
|
|
class Quantizer_module(torch.nn.Module): |
|
def __init__(self, n_e, e_dim): |
|
super(Quantizer_module, self).__init__() |
|
self.embedding = nn.Embedding(n_e, e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) |
|
|
|
def forward(self, x): |
|
|
|
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \ |
|
- 2 * torch.matmul(x, self.embedding.weight.T) |
|
min_indicies = torch.argmin(d, 1) |
|
z_q = self.embedding(min_indicies) |
|
return z_q, min_indicies |
|
|
|
|
|
class Quantizer(torch.nn.Module): |
|
def __init__(self, h): |
|
super(Quantizer, self).__init__() |
|
assert 512 % h.n_code_groups == 0 |
|
self.quantizer_modules = nn.ModuleList([ |
|
Quantizer_module(h.n_codes, 512 // h.n_code_groups) |
|
for _ in range(h.n_code_groups) |
|
]) |
|
self.quantizer_modules2 = nn.ModuleList([ |
|
Quantizer_module(h.n_codes, 512 // h.n_code_groups) |
|
for _ in range(h.n_code_groups) |
|
]) |
|
self.h = h |
|
self.codebook_loss_lambda = self.h.codebook_loss_lambda |
|
self.commitment_loss_lambda = self.h.commitment_loss_lambda |
|
self.residual_layer = 2 |
|
self.n_code_groups = h.n_code_groups |
|
|
|
def for_one_step(self, xin, idx): |
|
xin = xin.transpose(1, 2) |
|
x = xin.reshape(-1, 512) |
|
x = torch.split(x, 512 // self.h.n_code_groups, dim=-1) |
|
min_indicies = [] |
|
z_q = [] |
|
if idx == 0: |
|
for _x, m in zip(x, self.quantizer_modules): |
|
_z_q, _min_indicies = m(_x) |
|
z_q.append(_z_q) |
|
min_indicies.append(_min_indicies) |
|
z_q = torch.cat(z_q, -1).reshape(xin.shape) |
|
|
|
loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ |
|
+ self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) |
|
z_q = xin + (z_q - xin).detach() |
|
z_q = z_q.transpose(1, 2) |
|
return z_q, loss, min_indicies |
|
else: |
|
for _x, m in zip(x, self.quantizer_modules2): |
|
_z_q, _min_indicies = m(_x) |
|
z_q.append(_z_q) |
|
min_indicies.append(_min_indicies) |
|
z_q = torch.cat(z_q, -1).reshape(xin.shape) |
|
|
|
loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ |
|
+ self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) |
|
z_q = xin + (z_q - xin).detach() |
|
z_q = z_q.transpose(1, 2) |
|
return z_q, loss, min_indicies |
|
|
|
def forward(self, xin): |
|
|
|
quantized_out = 0.0 |
|
residual = xin |
|
all_losses = [] |
|
all_indices = [] |
|
for i in range(self.residual_layer): |
|
quantized, loss, indices = self.for_one_step(residual, i) |
|
residual = residual - quantized |
|
quantized_out = quantized_out + quantized |
|
all_indices.extend(indices) |
|
all_losses.append(loss) |
|
all_losses = torch.stack(all_losses) |
|
loss = torch.mean(all_losses) |
|
return quantized_out, loss, all_indices |
|
|
|
def embed(self, x): |
|
|
|
|
|
quantized_out = torch.tensor(0.0, device=x.device) |
|
x = torch.split(x, 1, 2) |
|
|
|
|
|
for i in range(self.residual_layer): |
|
ret = [] |
|
if i == 0: |
|
for j in range(self.n_code_groups): |
|
q = x[j] |
|
embed = self.quantizer_modules[j] |
|
q = embed.embedding(q.squeeze(-1)) |
|
ret.append(q) |
|
ret = torch.cat(ret, -1) |
|
|
|
quantized_out = quantized_out + ret |
|
else: |
|
for j in range(self.n_code_groups): |
|
q = x[j + self.n_code_groups] |
|
embed = self.quantizer_modules2[j] |
|
q = embed.embedding(q.squeeze(-1)) |
|
ret.append(q) |
|
ret = torch.cat(ret, -1) |
|
quantized_out = quantized_out + ret |
|
return quantized_out.transpose(1, 2) |
|
|