|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Core vector quantization implementation.""" |
|
|
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from einops import repeat |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Torch distributed utilities.""" |
|
import typing as tp |
|
|
|
import torch |
|
|
|
|
|
def rank(): |
|
if torch.distributed.is_initialized(): |
|
return torch.distributed.get_rank() |
|
else: |
|
return 0 |
|
|
|
|
|
def world_size(): |
|
if torch.distributed.is_initialized(): |
|
return torch.distributed.get_world_size() |
|
else: |
|
return 1 |
|
|
|
|
|
def is_distributed(): |
|
return world_size() > 1 |
|
|
|
|
|
def all_reduce(tensor: torch.Tensor, op=torch.distributed.ReduceOp.SUM): |
|
if is_distributed(): |
|
return torch.distributed.all_reduce(tensor, op) |
|
|
|
|
|
def _is_complex_or_float(tensor): |
|
return torch.is_floating_point(tensor) or torch.is_complex(tensor) |
|
|
|
|
|
def _check_number_of_params(params: tp.List[torch.Tensor]): |
|
|
|
|
|
if not is_distributed() or not params: |
|
return |
|
|
|
tensor = torch.tensor( |
|
[len(params)], device=params[0].device, dtype=torch.long) |
|
all_reduce(tensor) |
|
if tensor.item() != len(params) * world_size(): |
|
|
|
|
|
raise RuntimeError( |
|
f"Mismatch in number of params: ours is {len(params)}, " |
|
"at least one worker has a different one.") |
|
|
|
|
|
def broadcast_tensors(tensors: tp.Iterable[torch.Tensor], src: int = 0): |
|
"""Broadcast the tensors from the given parameters to all workers. |
|
This can be used to ensure that all workers have the same model to start with. |
|
""" |
|
if not is_distributed(): |
|
return |
|
tensors = [tensor for tensor in tensors if _is_complex_or_float(tensor)] |
|
_check_number_of_params(tensors) |
|
handles = [] |
|
for tensor in tensors: |
|
|
|
handle = torch.distributed.broadcast( |
|
tensor.data, src=src, async_op=True) |
|
handles.append(handle) |
|
for handle in handles: |
|
handle.wait() |
|
|
|
|
|
def sync_buffer(buffers, average=True): |
|
""" |
|
Sync grad for buffers. If average is False, broadcast instead of averaging. |
|
""" |
|
if not is_distributed(): |
|
return |
|
handles = [] |
|
for buffer in buffers: |
|
if torch.is_floating_point(buffer.data): |
|
if average: |
|
handle = torch.distributed.all_reduce( |
|
buffer.data, |
|
op=torch.distributed.ReduceOp.SUM, |
|
async_op=True) |
|
else: |
|
handle = torch.distributed.broadcast( |
|
buffer.data, src=0, async_op=True) |
|
handles.append((buffer, handle)) |
|
for buffer, handle in handles: |
|
handle.wait() |
|
if average: |
|
buffer.data /= world_size |
|
|
|
|
|
def sync_grad(params): |
|
""" |
|
Simpler alternative to DistributedDataParallel, that doesn't rely |
|
on any black magic. For simple models it can also be as fast. |
|
Just call this on your model parameters after the call to backward! |
|
""" |
|
if not is_distributed(): |
|
return |
|
handles = [] |
|
for p in params: |
|
if p.grad is not None: |
|
handle = torch.distributed.all_reduce( |
|
p.grad.data, op=torch.distributed.ReduceOp.SUM, async_op=True) |
|
handles.append((p, handle)) |
|
for p, handle in handles: |
|
handle.wait() |
|
p.grad.data /= world_size() |
|
|
|
|
|
def average_metrics(metrics: tp.Dict[str, float], count=1.): |
|
"""Average a dictionary of metrics across all workers, using the optional |
|
`count` as unormalized weight. |
|
""" |
|
if not is_distributed(): |
|
return metrics |
|
keys, values = zip(*metrics.items()) |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
tensor = torch.tensor( |
|
list(values) + [1], device=device, dtype=torch.float32) |
|
tensor *= count |
|
all_reduce(tensor) |
|
averaged = (tensor[:-1] / tensor[-1]).cpu().tolist() |
|
return dict(zip(keys, averaged)) |
|
|
|
|
|
def default(val: tp.Any, d: tp.Any) -> tp.Any: |
|
return val if val is not None else d |
|
|
|
|
|
def ema_inplace(moving_avg, new, decay: float): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): |
|
return (x + epsilon) / (x.sum() + n_categories * epsilon) |
|
|
|
|
|
def uniform_init(*shape: int): |
|
t = torch.empty(shape) |
|
nn.init.kaiming_uniform_(t) |
|
return t |
|
|
|
|
|
def sample_vectors(samples, num: int): |
|
num_samples, device = samples.shape[0], samples.device |
|
|
|
if num_samples >= num: |
|
indices = torch.randperm(num_samples, device=device)[:num] |
|
else: |
|
indices = torch.randint(0, num_samples, (num,), device=device) |
|
|
|
return samples[indices] |
|
|
|
|
|
def kmeans(samples, num_clusters: int, num_iters: int = 10): |
|
dim, dtype = samples.shape[-1], samples.dtype |
|
|
|
means = sample_vectors(samples, num_clusters) |
|
|
|
for _ in range(num_iters): |
|
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, |
|
"c d -> () c d") |
|
dists = -(diffs ** 2).sum(dim=-1) |
|
|
|
buckets = dists.max(dim=-1).indices |
|
bins = torch.bincount(buckets, minlength=num_clusters) |
|
zero_mask = bins == 0 |
|
bins_min_clamped = bins.masked_fill(zero_mask, 1) |
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) |
|
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) |
|
new_means = new_means / bins_min_clamped[..., None] |
|
|
|
means = torch.where(zero_mask[..., None], means, new_means) |
|
|
|
return means, bins |
|
|
|
|
|
class EuclideanCodebook(nn.Module): |
|
"""Codebook with Euclidean distance. |
|
Args: |
|
dim (int): Dimension. |
|
codebook_size (int): Codebook size. |
|
kmeans_init (bool): Whether to use k-means to initialize the codebooks. |
|
If set to true, run the k-means algorithm on the first training batch and use |
|
the learned centroids as initialization. |
|
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
epsilon (float): Epsilon value for numerical stability. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
codebook_size: int, |
|
kmeans_init: int = False, |
|
kmeans_iters: int = 10, |
|
decay: float = 0.99, |
|
epsilon: float = 1e-5, |
|
threshold_ema_dead_code: int = 2, ): |
|
super().__init__() |
|
self.decay = decay |
|
init_fn: tp.Union[ |
|
tp.Callable[..., torch.Tensor], |
|
tp.Any] = uniform_init if not kmeans_init else torch.zeros |
|
embed = init_fn(codebook_size, dim) |
|
|
|
self.codebook_size = codebook_size |
|
|
|
self.kmeans_iters = kmeans_iters |
|
self.epsilon = epsilon |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
|
|
self.register_buffer("inited", torch.Tensor([not kmeans_init])) |
|
self.register_buffer("cluster_size", torch.zeros(codebook_size)) |
|
self.register_buffer("embed", embed) |
|
self.register_buffer("embed_avg", embed.clone()) |
|
|
|
@torch.jit.ignore |
|
def init_embed_(self, data): |
|
if self.inited: |
|
return |
|
|
|
embed, cluster_size = kmeans(data, self.codebook_size, |
|
self.kmeans_iters) |
|
self.embed.data.copy_(embed) |
|
self.embed_avg.data.copy_(embed.clone()) |
|
self.cluster_size.data.copy_(cluster_size) |
|
self.inited.data.copy_(torch.Tensor([True])) |
|
|
|
broadcast_tensors(self.buffers()) |
|
|
|
def replace_(self, samples, mask): |
|
modified_codebook = torch.where( |
|
mask[..., None], |
|
sample_vectors(samples, self.codebook_size), self.embed) |
|
self.embed.data.copy_(modified_codebook) |
|
|
|
def expire_codes_(self, batch_samples): |
|
if self.threshold_ema_dead_code == 0: |
|
return |
|
|
|
expired_codes = self.cluster_size < self.threshold_ema_dead_code |
|
if not torch.any(expired_codes): |
|
return |
|
|
|
batch_samples = rearrange(batch_samples, "... d -> (...) d") |
|
self.replace_(batch_samples, mask=expired_codes) |
|
broadcast_tensors(self.buffers()) |
|
|
|
def preprocess(self, x): |
|
x = rearrange(x, "... d -> (...) d") |
|
return x |
|
|
|
def quantize(self, x): |
|
embed = self.embed.t() |
|
dist = -(x.pow(2).sum(1, keepdim=True) - 2 * x @ embed + |
|
embed.pow(2).sum(0, keepdim=True)) |
|
embed_ind = dist.max(dim=-1).indices |
|
return embed_ind |
|
|
|
def postprocess_emb(self, embed_ind, shape): |
|
return embed_ind.view(*shape[:-1]) |
|
|
|
def dequantize(self, embed_ind): |
|
quantize = F.embedding(embed_ind, self.embed) |
|
return quantize |
|
|
|
def encode(self, x): |
|
shape = x.shape |
|
|
|
x = self.preprocess(x) |
|
|
|
embed_ind = self.quantize(x) |
|
|
|
embed_ind = self.postprocess_emb(embed_ind, shape) |
|
return embed_ind |
|
|
|
def decode(self, embed_ind): |
|
quantize = self.dequantize(embed_ind) |
|
return quantize |
|
|
|
def forward(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
x = self.preprocess(x) |
|
|
|
self.init_embed_(x) |
|
|
|
embed_ind = self.quantize(x) |
|
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) |
|
embed_ind = self.postprocess_emb(embed_ind, shape) |
|
quantize = self.dequantize(embed_ind) |
|
|
|
if self.training: |
|
|
|
|
|
self.expire_codes_(x) |
|
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) |
|
embed_sum = x.t() @ embed_onehot |
|
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) |
|
cluster_size = ( |
|
laplace_smoothing(self.cluster_size, self.codebook_size, |
|
self.epsilon) * self.cluster_size.sum()) |
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) |
|
self.embed.data.copy_(embed_normalized) |
|
|
|
return quantize, embed_ind |
|
|
|
|
|
class VectorQuantization(nn.Module): |
|
"""Vector quantization implementation. |
|
Currently supports only euclidean distance. |
|
Args: |
|
dim (int): Dimension |
|
codebook_size (int): Codebook size |
|
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
epsilon (float): Epsilon value for numerical stability. |
|
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. |
|
kmeans_iters (int): Number of iterations used for kmeans initialization. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
commitment_weight (float): Weight for commitment loss. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
codebook_size: int, |
|
codebook_dim: tp.Optional[int] = None, |
|
decay: float = 0.99, |
|
epsilon: float = 1e-5, |
|
kmeans_init: bool = True, |
|
kmeans_iters: int = 50, |
|
threshold_ema_dead_code: int = 2, |
|
commitment_weight: float = 1., ): |
|
super().__init__() |
|
_codebook_dim: int = default(codebook_dim, dim) |
|
|
|
requires_projection = _codebook_dim != dim |
|
self.project_in = (nn.Linear(dim, _codebook_dim) |
|
if requires_projection else nn.Identity()) |
|
self.project_out = (nn.Linear(_codebook_dim, dim) |
|
if requires_projection else nn.Identity()) |
|
|
|
self.epsilon = epsilon |
|
self.commitment_weight = commitment_weight |
|
|
|
self._codebook = EuclideanCodebook( |
|
dim=_codebook_dim, |
|
codebook_size=codebook_size, |
|
kmeans_init=kmeans_init, |
|
kmeans_iters=kmeans_iters, |
|
decay=decay, |
|
epsilon=epsilon, |
|
threshold_ema_dead_code=threshold_ema_dead_code) |
|
self.codebook_size = codebook_size |
|
|
|
@property |
|
def codebook(self): |
|
return self._codebook.embed |
|
|
|
def encode(self, x): |
|
x = rearrange(x, "b d n -> b n d") |
|
x = self.project_in(x) |
|
embed_in = self._codebook.encode(x) |
|
return embed_in |
|
|
|
def decode(self, embed_ind): |
|
quantize = self._codebook.decode(embed_ind) |
|
quantize = self.project_out(quantize) |
|
if len(quantize.size()) < 3: |
|
quantize = quantize.unsqueeze(0) |
|
quantize = rearrange(quantize, "b n d -> b d n") |
|
return quantize |
|
|
|
def forward(self, x): |
|
device = x.device |
|
x = rearrange(x, "b d n -> b n d") |
|
x = self.project_in(x) |
|
|
|
quantize, embed_ind = self._codebook(x) |
|
|
|
if self.training: |
|
quantize = x + (quantize - x).detach() |
|
|
|
loss = torch.tensor([0.0], device=device, requires_grad=self.training) |
|
|
|
if self.training: |
|
if self.commitment_weight > 0: |
|
commit_loss = F.mse_loss(quantize.detach(), x) |
|
loss = loss + commit_loss * self.commitment_weight |
|
|
|
quantize = self.project_out(quantize) |
|
quantize = rearrange(quantize, "b n d -> b d n") |
|
return quantize, embed_ind, loss |
|
|
|
|
|
class ResidualVectorQuantization(nn.Module): |
|
"""Residual vector quantization implementation. |
|
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf |
|
""" |
|
|
|
def __init__(self, *, num_quantizers, **kwargs): |
|
super().__init__() |
|
self.layers = nn.ModuleList( |
|
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]) |
|
|
|
def forward(self, x, n_q: tp.Optional[int] = None): |
|
quantized_out = 0.0 |
|
residual = x |
|
|
|
all_losses = [] |
|
all_indices = [] |
|
|
|
n_q = n_q or len(self.layers) |
|
|
|
for layer in self.layers[:n_q]: |
|
quantized, indices, loss = layer(residual) |
|
residual = residual - quantized |
|
quantized_out = quantized_out + quantized |
|
|
|
all_indices.append(indices) |
|
all_losses.append(loss) |
|
|
|
out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) |
|
return quantized_out, out_indices, out_losses |
|
|
|
def encode(self, |
|
x: torch.Tensor, |
|
n_q: tp.Optional[int] = None, |
|
st: tp.Optional[int] = None) -> torch.Tensor: |
|
residual = x |
|
all_indices = [] |
|
n_q = n_q or len(self.layers) |
|
st = st or 0 |
|
for layer in self.layers[st:n_q]: |
|
indices = layer.encode(residual) |
|
quantized = layer.decode(indices) |
|
residual = residual - quantized |
|
all_indices.append(indices) |
|
out_indices = torch.stack(all_indices) |
|
return out_indices |
|
|
|
def decode(self, q_indices: torch.Tensor) -> torch.Tensor: |
|
quantized_out = torch.tensor(0.0, device=q_indices.device) |
|
for i, indices in enumerate(q_indices): |
|
layer = self.layers[i] |
|
quantized = layer.decode(indices) |
|
quantized_out = quantized_out + quantized |
|
return quantized_out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Residual vector quantizer implementation.""" |
|
|
|
from dataclasses import dataclass, field |
|
import math |
|
import typing as tp |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
@dataclass |
|
class QuantizedResult: |
|
quantized: torch.Tensor |
|
codes: torch.Tensor |
|
bandwidth: torch.Tensor |
|
penalty: tp.Optional[torch.Tensor] = None |
|
metrics: dict = field(default_factory=dict) |
|
|
|
|
|
class ResidualVectorQuantizer(nn.Module): |
|
"""Residual Vector Quantizer. |
|
Args: |
|
dimension (int): Dimension of the codebooks. |
|
n_q (int): Number of residual vector quantizers used. |
|
bins (int): Codebook size. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. |
|
kmeans_iters (int): Number of iterations used for kmeans initialization. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dimension: int = 256, |
|
n_q: int = 8, |
|
bins: int = 1024, |
|
decay: float = 0.99, |
|
kmeans_init: bool = True, |
|
kmeans_iters: int = 50, |
|
threshold_ema_dead_code: int = 2, |
|
): |
|
super().__init__() |
|
self.n_q = n_q |
|
self.dimension = dimension |
|
self.bins = bins |
|
self.decay = decay |
|
self.kmeans_init = kmeans_init |
|
self.kmeans_iters = kmeans_iters |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
self.vq = ResidualVectorQuantization( |
|
dim=self.dimension, |
|
codebook_size=self.bins, |
|
num_quantizers=self.n_q, |
|
decay=self.decay, |
|
kmeans_init=self.kmeans_init, |
|
kmeans_iters=self.kmeans_iters, |
|
threshold_ema_dead_code=self.threshold_ema_dead_code, |
|
) |
|
|
|
def forward(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None) -> QuantizedResult: |
|
"""Residual vector quantization on the given input tensor. |
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
sample_rate (int): Sample rate of the input tensor. |
|
bandwidth (float): Target bandwidth. |
|
Returns: |
|
QuantizedResult: |
|
The quantized (or approximately quantized) representation with |
|
the associated bandwidth and any penalty term for the loss. |
|
""" |
|
bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) |
|
n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) |
|
quantized, codes, commit_loss = self.vq(x, n_q=n_q) |
|
bw = torch.tensor(n_q * bw_per_q).to(x) |
|
return quantized, codes, bw, torch.mean(commit_loss) |
|
|
|
|
|
def get_num_quantizers_for_bandwidth(self, sample_rate: int, bandwidth: tp.Optional[float] = None) -> int: |
|
"""Return n_q based on specified target bandwidth. |
|
""" |
|
bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) |
|
n_q = self.n_q |
|
if bandwidth and bandwidth > 0.: |
|
n_q = int(max(1, math.floor(bandwidth / bw_per_q))) |
|
return n_q |
|
|
|
def get_bandwidth_per_quantizer(self, sample_rate: int): |
|
"""Return bandwidth per quantizer for a given input sample rate. |
|
""" |
|
return math.log2(self.bins) * sample_rate / 1000 |
|
|
|
def encode(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None, st: tp.Optional[int] = None) -> torch.Tensor: |
|
"""Encode a given input tensor with the specified sample rate at the given bandwidth. |
|
The RVQ encode method sets the appropriate number of quantizer to use |
|
and returns indices for each quantizer. |
|
""" |
|
n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) |
|
st = st or 0 |
|
codes = self.vq.encode(x, n_q=n_q, st=st) |
|
return codes |
|
|
|
def decode(self, codes: torch.Tensor) -> torch.Tensor: |
|
"""Decode the given codes to the quantized representation. |
|
""" |
|
quantized = self.vq.decode(codes) |
|
return quantized |
|
|