|
from collections import OrderedDict |
|
|
|
import torch |
|
from torchaudio.transforms import Resample |
|
|
|
from Preprocessing.Codec.encodec import EnCodec |
|
|
|
|
|
class CodecAudioPreprocessor: |
|
|
|
def __init__(self, input_sr, output_sr=16000, device="cpu", path_to_model="Preprocessing/Codec/encodec_16k_320d.pt"): |
|
self.device = device |
|
self.input_sr = input_sr |
|
self.output_sr = output_sr |
|
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) |
|
self.model = EnCodec(n_filters=32, D=512) |
|
parameter_dict = torch.load(path_to_model, map_location="cpu") |
|
new_state_dict = OrderedDict() |
|
for k, v in parameter_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
self.model.load_state_dict(new_state_dict) |
|
remove_encodec_weight_norm(self.model) |
|
self.model.eval() |
|
self.model.to(device) |
|
|
|
def resample_audio(self, audio, current_sampling_rate): |
|
if current_sampling_rate != self.input_sr: |
|
print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples") |
|
self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device) |
|
self.input_sr = current_sampling_rate |
|
if type(audio) != torch.tensor and type(audio) != torch.Tensor: |
|
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) |
|
audio = self.resample(audio.float().to(self.device)) |
|
return audio |
|
|
|
@torch.inference_mode() |
|
def audio_to_codebook_indexes(self, audio, current_sampling_rate): |
|
if current_sampling_rate != self.output_sr: |
|
audio = self.resample_audio(audio, current_sampling_rate) |
|
elif type(audio) != torch.tensor and type(audio) != torch.Tensor: |
|
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) |
|
return self.model.encode(audio.float().unsqueeze(0).unsqueeze(0).to(self.device)).squeeze() |
|
|
|
@torch.inference_mode() |
|
def indexes_to_audio(self, codebook_indexes): |
|
return self.model.decode(codebook_indexes).squeeze() |
|
|
|
|
|
def remove_encodec_weight_norm(model): |
|
from Preprocessing.Codec.seanet import SConv1d |
|
from Preprocessing.Codec.seanet import SConvTranspose1d |
|
from Preprocessing.Codec.seanet import SEANetResnetBlock |
|
from torch.nn.utils import remove_weight_norm |
|
|
|
encoder = model.encoder.model |
|
for key in encoder._modules: |
|
if isinstance(encoder._modules[key], SEANetResnetBlock): |
|
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) |
|
block_modules = encoder._modules[key].block._modules |
|
for skey in block_modules: |
|
if isinstance(block_modules[skey], SConv1d): |
|
remove_weight_norm(block_modules[skey].conv.conv) |
|
elif isinstance(encoder._modules[key], SConv1d): |
|
remove_weight_norm(encoder._modules[key].conv.conv) |
|
|
|
decoder = model.decoder.model |
|
for key in decoder._modules: |
|
if isinstance(decoder._modules[key], SEANetResnetBlock): |
|
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) |
|
block_modules = decoder._modules[key].block._modules |
|
for skey in block_modules: |
|
if isinstance(block_modules[skey], SConv1d): |
|
remove_weight_norm(block_modules[skey].conv.conv) |
|
elif isinstance(decoder._modules[key], SConvTranspose1d): |
|
remove_weight_norm(decoder._modules[key].convtr.convtr) |
|
elif isinstance(decoder._modules[key], SConv1d): |
|
remove_weight_norm(decoder._modules[key].conv.conv) |
|
|
|
|
|
if __name__ == '__main__': |
|
import soundfile |
|
|
|
import time |
|
|
|
with torch.inference_mode(): |
|
test_audio1 = "../audios/ad01_0000.wav" |
|
test_audio2 = "../audios/angry.wav" |
|
test_audio3 = "../audios/ry.wav" |
|
test_audio4 = "../audios/test.wav" |
|
ap = CodecAudioPreprocessor(input_sr=1, path_to_model="Codec/encodec_16k_320d.pt") |
|
|
|
wav, sr = soundfile.read(test_audio1) |
|
indexes_1 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) |
|
wav, sr = soundfile.read(test_audio2) |
|
indexes_2 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) |
|
wav, sr = soundfile.read(test_audio3) |
|
indexes_3 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) |
|
wav, sr = soundfile.read(test_audio4) |
|
indexes_4 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) |
|
|
|
print(indexes_4) |
|
|
|
t0 = time.time() |
|
|
|
audio1 = ap.indexes_to_audio(indexes_1) |
|
audio2 = ap.indexes_to_audio(indexes_2) |
|
audio3 = ap.indexes_to_audio(indexes_3) |
|
audio4 = ap.indexes_to_audio(indexes_4) |
|
|
|
t1 = time.time() |
|
|
|
print(audio1.shape) |
|
print(audio2.shape) |
|
print(audio3.shape) |
|
print(audio4.shape) |
|
|
|
print(t1 - t0) |
|
soundfile.write(file=f"../audios/1_reconstructed_in_{t1 - t0}_encodec.wav", data=audio1, samplerate=16000) |
|
soundfile.write(file=f"../audios/2_reconstructed_in_{t1 - t0}_encodec.wav", data=audio2, samplerate=16000) |
|
soundfile.write(file=f"../audios/3_reconstructed_in_{t1 - t0}_encodec.wav", data=audio3, samplerate=16000) |
|
soundfile.write(file=f"../audios/4_reconstructed_in_{t1 - t0}_encodec.wav", data=audio4, samplerate=16000) |
|
|