|
|
|
|
|
from math import exp |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
|
|
|
|
class RedundancyReduction(torch.nn.Module): |
|
|
|
def __init__(self, lambd=1e-5, vector_dimensions=256): |
|
super().__init__() |
|
self.lambd = lambd |
|
self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False) |
|
|
|
def forward(self, z1, z2): |
|
c = self.bn(z1).T @ self.bn(z2) |
|
c.div_(z1.size(0)) |
|
off_diag = off_diagonal(c).pow_(2).sum() |
|
return self.lambd * off_diag |
|
|
|
|
|
class BarlowTwinsLoss(torch.nn.Module): |
|
|
|
def __init__(self, lambd=1e-5, vector_dimensions=256): |
|
super().__init__() |
|
self.lambd = lambd |
|
self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False) |
|
|
|
def forward(self, z1, z2): |
|
c = self.bn(z1).T @ self.bn(z2) |
|
c.div_(z1.size(0)) |
|
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() |
|
off_diag = off_diagonal(c).pow_(2).sum() |
|
loss = on_diag + self.lambd * off_diag |
|
return loss |
|
|
|
|
|
def off_diagonal(x): |
|
|
|
n, m = x.shape |
|
assert n == m |
|
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() |
|
|
|
|
|
class TripletLoss(torch.nn.Module): |
|
|
|
def __init__(self, margin): |
|
super().__init__() |
|
self.cosine_similarity = torch.nn.CosineSimilarity() |
|
self.margin = margin |
|
|
|
def forward(self, |
|
anchor_embeddings, |
|
positive_embeddings, |
|
negative_embeddings): |
|
positive_distance = 1 - self.cosine_similarity(anchor_embeddings, positive_embeddings) |
|
negative_distance = 1 - self.cosine_similarity(anchor_embeddings, negative_embeddings) |
|
|
|
losses = torch.max(positive_distance - negative_distance + self.margin, |
|
torch.full_like(positive_distance, 0)) |
|
return torch.mean(losses) |
|
|
|
|
|
|
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) |
|
return gauss / gauss.sum() |
|
|
|
|
|
def create_window(window_size, channel): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) |
|
return window |
|
|
|
|
|
def _ssim(img1, img2, window, window_size, channel, size_average=True): |
|
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) |
|
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq |
|
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 |
|
|
|
C1 = 0.01 ** 2 |
|
C2 = 0.03 ** 2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) |
|
|
|
if size_average: |
|
return ssim_map.mean() |
|
else: |
|
return ssim_map.mean(1) |
|
|
|
|
|
class SSIM(torch.nn.Module): |
|
""" |
|
Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim |
|
""" |
|
|
|
def __init__(self, window_size=11, size_average=True): |
|
super(SSIM, self).__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.channel = 1 |
|
self.window = create_window(window_size, self.channel) |
|
|
|
def forward(self, img1, img2): |
|
(_, channel, _, _) = img1.size() |
|
|
|
if channel == self.channel and self.window.data.type() == img1.data.type(): |
|
window = self.window |
|
else: |
|
window = create_window(self.window_size, channel) |
|
|
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
|
|
self.window = window |
|
self.channel = channel |
|
|
|
return _ssim(img1, img2, window, self.window_size, channel, self.size_average) |
|
|
|
|
|
window = None |
|
|
|
|
|
def ssim(img1, img2, window_size=11, size_average=True): |
|
(_, channel, _, _) = img1.size() |
|
global window |
|
if window is None: |
|
window = create_window(window_size, channel) |
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
return _ssim(img1, img2, window, window_size, channel, size_average) |
|
|