|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
import torch |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
LANG_CODES = { |
|
"English":"en", |
|
"Romanian":"ro", |
|
"Spanish":"es", |
|
"Italian":"it", |
|
"German":"de", |
|
"Portugese":"pt", |
|
"French":"fr", |
|
"Dutch":"nl", |
|
"Chinese":"zh", |
|
"Japanese":"ja", |
|
"Korean":"ko", |
|
"Russian":"ru" |
|
} |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/m2m100_418M").to(device) |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") |
|
|
|
def translate(text, src_lang, tgt_lang, candidates:int): |
|
""" |
|
Translate the text from source lang to target lang |
|
""" |
|
|
|
src = LANG_CODES.get(src_lang) |
|
tgt = LANG_CODES.get(tgt_lang) |
|
|
|
tokenizer.src_lang = src |
|
tokenizer.tgt_lang = tgt |
|
|
|
ins = tokenizer(text, return_tensors='pt').to(device) |
|
|
|
gen_args = { |
|
'return_dict_in_generate': True, |
|
'output_scores': True, |
|
'output_hidden_states': True, |
|
'length_penalty': 0.0, |
|
'num_return_sequences': candidates, |
|
'num_beams':candidates, |
|
'forced_bos_token_id': tokenizer.lang_code_to_id[tgt] |
|
} |
|
|
|
|
|
outs = model.generate(**{**ins, **gen_args}) |
|
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True) |
|
|
|
return '\n'.join(output) |
|
|
|
with gr.Blocks() as app: |
|
markdown=""" |
|
# Translate any text to ANY language! |
|
|
|
### Bună! 💬 |
|
|
|
This is an English to Any Language / Any Language to English neural machine translation app. |
|
|
|
Input your text to translate, a source language and target language, and desired number of return sequences! |
|
|
|
Return sequences is formally known as alternative translations. |
|
If the main translation is not good for what tone you expect, you can increase return sequences and retranslate. |
|
It will show a list of alternative translations, alongside the main translation. |
|
|
|
Right now, this only supports 12 languages. |
|
|
|
I will add more later! So stay tuned! |
|
|
|
### Model and Data |
|
This app uses Facebook/Meta AI's M2M100 418M param model for translation. |
|
|
|
### This app is a machine and not all translations will be perfect. |
|
""" |
|
|
|
with gr.Row(): |
|
gr.Markdown(markdown) |
|
with gr.Column(): |
|
input_text = gr.components.Textbox(label="Input Text", value="Hello, world! Have a nice day!") |
|
source_lang = gr.components.Dropdown(label="Source Language", value="English", choices=list(LANG_CODES.keys())) |
|
target_lang = gr.components.Dropdown(label="Target Language", value="Romanian", choices=list(LANG_CODES.keys())) |
|
return_seqs = gr.Slider(label="Number of return sequences", value=3, minimum=1, maximum=256, step=1) |
|
|
|
inputs=[input_text, source_lang, target_lang, return_seqs] |
|
outputs = gr.Textbox() |
|
|
|
translate_btn = gr.Button("Translate!") |
|
translate_btn.click(translate, inputs=inputs, outputs=outputs) |
|
|
|
gr.Examples( |
|
[ |
|
["Hello! How are you?", "English", "Romanian", 3], |
|
["Mă numesc Popa Mihai și am 13 ani.", "Romanian", "English", 3], |
|
["Tu vreau cafea.", "Romanian", "Romanian", 3], |
|
["Do you needs coffee?", "English", "English", 3], |
|
], |
|
inputs=inputs |
|
) |
|
|
|
app.launch() |