Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from backtrack_sampler import BacktrackSampler, CreativeWritingStrategy | |
from backtrack_sampler.provider.transformers_provider import TransformersProvider | |
import torch | |
import asyncio | |
import spaces | |
description = """## Compare Creative Writing: Custom Sampler vs. Backtrack Sampler with Creative Writing Strategy | |
This is a demo of [Backtrack Sampler](https://github.com/Mihaiii/backtrack_sampler) using one of its algorithms named "Creative Writing Strategy". | |
<br />On the left you have the output of the standard sampling and on the write the output privided by Backtrack Sampler. | |
""" | |
# Load tokenizer | |
model_name = "unsloth/Llama-3.2-1B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Load two instances of the model on CUDA for parallel inference | |
model1 = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") | |
model2 = AutoModelForCausalLM.from_pretrained(model_name) | |
device = torch.device('cuda') | |
strategy = CreativeWritingStrategy(top_p_flat = 0.8, top_k_threshold_flat = 2, min_prob_second_highest = 0.2) | |
provider = TransformersProvider(model2, tokenizer, device) | |
creative_sampler = BacktrackSampler(strategy, provider) | |
# Helper function to create message array for the chat template | |
def create_chat_template_messages(history, prompt): | |
messages = [{"role": "user", "content": prompt}] | |
for i, (input_text, response_text) in enumerate(history): | |
messages.append({"role": "user" if i % 2 == 0 else "assistant", "content": input_text}) | |
messages.append({"role": "assistant", "content": response_text}) | |
return messages | |
# Async function for generating responses using two models | |
async def generate_responses(prompt, history): | |
# Create messages array for chat history and apply template | |
messages = create_chat_template_messages(history, prompt) | |
wrapped_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_special_tokens=True, add_generation_prompt=True) | |
#already has special tokens | |
inputs = tokenizer.encode(wrapped_prompt, add_special_tokens=False, return_tensors="pt").to("cuda") | |
# Standard sampler task | |
standard_task = asyncio.to_thread( | |
model1.generate, inputs, max_length=2048, temperature=1 | |
) | |
# Custom sampler task: loop over generator and collect outputs in a list | |
async def custom_sampler_task(): | |
generated_list = [] | |
generator = creative_sampler.generate(wrapped_prompt, max_length=2048, temperature=1) | |
for token in generator: | |
generated_list.append(token) | |
return tokenizer.decode(generated_list, skip_special_tokens=True) | |
# Wait for both responses | |
standard_output, custom_output = await asyncio.gather(standard_task, custom_sampler_task()) | |
# Decode standard output and remove the prompt from the generated response | |
standard_response = tokenizer.decode(standard_output[0][len(inputs[0]):], skip_special_tokens=True) | |
return standard_response.strip(), custom_output.strip() | |
# Create the Gradio interface with the Citrus theme | |
with gr.Blocks(theme=gr.themes.Citrus()) as demo: | |
gr.Markdown(description) | |
# Chatbot components | |
with gr.Row(): | |
standard_chat = gr.Chatbot(label="Standard Sampler") | |
custom_chat = gr.Chatbot(label="Creative Writing Strategy") | |
# Input components | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Type your message here...", lines=1) | |
# Example prompts | |
examples = [ | |
"Write me a short story about a talking dog who wants to be a detective.", | |
"Tell me a short tale of a dragon who is afraid of heights.", | |
"Create a short story where aliens land on Earth, but they just want to throw a party." | |
] | |
# Add example buttons | |
gr.Examples(examples=examples, inputs=prompt_input) | |
# Button to submit the prompt | |
submit_button = gr.Button("Submit") | |
# Function to handle chat updates | |
async def update_chat(prompt, standard_history, custom_history): | |
standard_response, custom_response = await generate_responses(prompt, standard_history) | |
# Append new responses to chat histories | |
standard_history = standard_history + [(prompt, standard_response)] | |
custom_history = custom_history + [(prompt, custom_response)] | |
# Clear the input field after submission | |
return standard_history, custom_history, "" | |
# Bind the submit button to the update function and allow pressing Enter to submit | |
prompt_input.submit(fn=update_chat, inputs=[prompt_input, standard_chat, custom_chat], outputs=[standard_chat, custom_chat, prompt_input]) | |
submit_button.click(fn=update_chat, inputs=[prompt_input, standard_chat, custom_chat], outputs=[standard_chat, custom_chat, prompt_input]) | |
# Launch the app with queueing and sharing enabled | |
demo.queue().launch(share=True, debug=True) | |