Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from backtrack_sampler import BacktrackSampler, CreativeWritingStrategy | |
from backtrack_sampler.provider.transformers_provider import TransformersProvider | |
import torch | |
import spaces | |
import asyncio | |
description = """## Compare Creative Writing: Standard Sampler vs. Backtrack Sampler with Creative Writing Strategy | |
This is a demo of the [Backtrack Sampler](https://github.com/Mihaiii/backtrack_sampler) framework using "Creative Writing Strategy". | |
<br />On the left is the output of the standard sampler and on the right the output privided by Backtrack Sampler. | |
""" | |
model_name = "unsloth/Llama-3.2-1B-Instruct" | |
device = torch.device('cuda') | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model1 = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") | |
model2 = AutoModelForCausalLM.from_pretrained(model_name) | |
provider = TransformersProvider(model2, tokenizer, device) | |
strategy = CreativeWritingStrategy(provider, | |
top_p_flat = 0.65, | |
top_k_threshold_flat = 9, | |
eos_penalty = 0.75) | |
creative_sampler = BacktrackSampler(provider, strategy) | |
def create_chat_template_messages(history, prompt): | |
messages = [{"role": "user", "content": prompt}] | |
for i, (input_text, response_text) in enumerate(history): | |
messages.append({"role": "user" if i % 2 == 0 else "assistant", "content": input_text}) | |
messages.append({"role": "assistant", "content": response_text}) | |
return messages | |
def generate_responses(prompt, history): | |
messages = create_chat_template_messages(history, prompt) | |
wrapped_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
#it already has special tokens from wrapped_prompt | |
inputs = tokenizer.encode(wrapped_prompt, add_special_tokens=False, return_tensors="pt").to("cuda") | |
async def custom_sampler_task(): | |
generated_list = [] | |
generator = creative_sampler.generate(wrapped_prompt, max_new_tokens=1024, temperature=1) | |
for token in generator: | |
generated_list.append(token) | |
return tokenizer.decode(generated_list, skip_special_tokens=True) | |
custom_output = asyncio.run(custom_sampler_task()) | |
standard_output = model1.generate(inputs, max_new_tokens=1024, temperature=1) | |
standard_response = tokenizer.decode(standard_output[0][len(inputs[0]):], skip_special_tokens=True) | |
return standard_response.strip(), custom_output.strip() | |
with gr.Blocks(theme=gr.themes.Citrus()) as demo: | |
gr.Markdown(description) | |
with gr.Row(): | |
standard_chat = gr.Chatbot(label="Standard Sampler") | |
custom_chat = gr.Chatbot(label="Creative Writing Strategy") | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Type your message here...", lines=1) | |
examples = [ | |
"Write me a short story about a talking dog who wants to be a detective.", | |
"Tell me a short tale of a dragon who is afraid of heights.", | |
"Create a short story where aliens land on Earth, but they just want to throw a party." | |
] | |
gr.Examples(examples=examples, inputs=prompt_input) | |
submit_button = gr.Button("Submit") | |
def update_chat(prompt, standard_history, custom_history): | |
standard_response, custom_response = generate_responses(prompt, standard_history) | |
standard_history = standard_history + [(prompt, standard_response)] | |
custom_history = custom_history + [(prompt, custom_response)] | |
return standard_history, custom_history, "" | |
prompt_input.submit(fn=update_chat, inputs=[prompt_input, standard_chat, custom_chat], outputs=[standard_chat, custom_chat, prompt_input]) | |
submit_button.click(fn=update_chat, inputs=[prompt_input, standard_chat, custom_chat], outputs=[standard_chat, custom_chat, prompt_input]) | |
demo.queue().launch(debug=True) | |