File size: 6,908 Bytes
359c749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db7b4c
 
 
 
 
359c749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db7b4c
 
 
 
 
359c749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db7b4c
 
 
359c749
8db7b4c
 
 
359c749
8db7b4c
359c749
 
 
8db7b4c
 
 
359c749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db7b4c
 
 
359c749
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO

import pandas as pd

WEATHER_DATA_FILE = "weather_data.csv"
POLLUTION_DATA_FILE = "pollution_data.csv"


def update_weather_data() -> None:
    """
    Updates weather data by fetching data.
    If the data file exists, it appends new data. If not, it creates a new file.
    """
    today = date.today().isoformat()

    if os.path.exists(WEATHER_DATA_FILE):
        df = pd.read_csv(WEATHER_DATA_FILE)
        last_date = pd.to_datetime(df["date"]).max()
        start_date = (last_date + timedelta(1)).isoformat()
    else:
        df = pd.DataFrame()
        start_date = (date.today() - timedelta(7)).isoformat()

    try:
        ResultBytes = urllib.request.urlopen(
            f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
        )
        CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))

        new_data = pd.DataFrame(list(CSVText))
        new_data.columns = new_data.iloc[0]
        new_data = new_data[1:]
        new_data = new_data.rename(columns={"datetime": "date"})

        updated_df = pd.concat([df, new_data], ignore_index=True)
        updated_df.drop_duplicates(subset="date", keep="last", inplace=True)
        updated_df.to_csv(WEATHER_DATA_FILE, index=False)

    except urllib.error.HTTPError as e:
        ErrorInfo = e.read().decode()
        print("Error code: ", e.code, ErrorInfo)
        sys.exit()
    except urllib.error.URLError as e:
        ErrorInfo = e.read().decode()
        print("Error code: ", e.code, ErrorInfo)
        sys.exit()


def update_pollution_data() -> None:
    """
    Updates pollution data for NO2 and O3.
    The new data is appended to the existing pollution data file.
    """
    O3 = []
    NO2 = []
    particles = ["NO2", "O3"]
    stations = ["NL10636", "NL10639", "NL10643"]
    all_dataframes = []
    today = date.today().isoformat() + "T09:00:00Z"
    yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"

    if os.path.exists(POLLUTION_DATA_FILE):
        existing_data = pd.read_csv(POLLUTION_DATA_FILE)
        last_date = pd.to_datetime(existing_data["date"]).max()
        if last_date >= pd.Timestamp(date.today()):
            print("Data is already up to date.")
            return

    # Only pull data for today if not already updated
    for particle in particles:
        for station in stations:
            conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
            payload = ""
            headers = {}
            conn.request(
                "GET",
                f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
                payload,
                headers,
            )
            res = conn.getresponse()
            data = res.read()
            decoded_data = data.decode("utf-8")
            df = pd.read_csv(StringIO(decoded_data))
            df = df.filter(like="value")
            all_dataframes.append(df)
        combined_data = pd.concat(all_dataframes, ignore_index=True)
        values = []

        for row in combined_data:
            cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
            if cleaned_value:
                values.append(float(cleaned_value[0]))

        if values:
            avg = sum(values) / len(values)
            if particle == "NO2":
                NO2.append(avg)
            else:
                O3.append(avg)

    new_data = pd.DataFrame(
        {
            "date": [date.today()],
            "NO2": NO2,
            "O3": O3,
        }
    )

    updated_data = pd.concat([existing_data, new_data], ignore_index=True)
    updated_data.drop_duplicates(subset="date", keep="last", inplace=True)

    updated_data.to_csv(POLLUTION_DATA_FILE, index=False)


def get_combined_data() -> pd.DataFrame:
    """
    Combines weather and pollution data for the last 7 days.

    Returns:
        pd.DataFrame: A DataFrame containing the combined weather and pollution data.
    """
    weather_df = pd.read_csv(WEATHER_DATA_FILE)

    today = pd.Timestamp.now().normalize()
    seven_days_ago = today - pd.Timedelta(days=7)
    weather_df["date"] = pd.to_datetime(weather_df["date"])
    weather_df = weather_df[
        (weather_df["date"] >= seven_days_ago) & (weather_df["date"] <= today)
    ]

    weather_df.insert(1, "NO2", None)
    weather_df.insert(2, "O3", None)
    weather_df.insert(10, "weekday", None)
    columns = list(weather_df.columns)
    columns.insert(3, columns.pop(6))
    weather_df = weather_df[columns]
    columns.insert(5, columns.pop(9))
    weather_df = weather_df[columns]
    columns.insert(9, columns.pop(6))
    weather_df = weather_df[columns]

    combined_df = weather_df

    # Apply scaling and renaming similar to the scale function from previous code
    combined_df = combined_df.rename(
        columns={
            "date": "date",
            "windspeed": "wind_speed",
            "temp": "mean_temp",
            "solarradiation": "global_radiation",
            "precip": "percipitation",
            "sealevelpressure": "pressure",
            "visibility": "minimum_visibility",
        }
    )

    combined_df["date"] = pd.to_datetime(combined_df["date"])
    combined_df["weekday"] = combined_df["date"].dt.day_name()

    combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
    combined_df["mean_temp"] = combined_df["mean_temp"] * 10
    combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
    combined_df["percipitation"] = combined_df["percipitation"] * 10
    combined_df["pressure"] = combined_df["pressure"] * 10

    combined_df["wind_speed"] = combined_df["wind_speed"].astype(int)
    combined_df["mean_temp"] = combined_df["mean_temp"].astype(int)
    combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(int)
    combined_df["percipitation"] = combined_df["percipitation"].astype(int)
    combined_df["pressure"] = combined_df["pressure"].astype(int)
    combined_df["humidity"] = combined_df["humidity"].astype(int)
    combined_df["global_radiation"] = combined_df["global_radiation"].astype(int)

    pollution_df = pd.read_csv(POLLUTION_DATA_FILE)

    pollution_df["date"] = pd.to_datetime(pollution_df["date"])
    pollution_df = pollution_df[
        (pollution_df["date"] >= seven_days_ago) & (pollution_df["date"] <= today)
    ]

    combined_df["NO2"] = pollution_df["NO2"]
    combined_df["O3"] = pollution_df["O3"]

    return combined_df