File size: 4,863 Bytes
359c749 8db7b4c 359c749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
import warnings
import joblib
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download, login
from src.past_data_api_calls import get_past_combined_data
warnings.filterwarnings("ignore")
load_dotenv()
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
def create_features(
data: pd.DataFrame,
target_particle: str, # Added this parameter
lag_days: int = 7,
sma_days: int = 7,
) -> pd.DataFrame:
"""
Create features for predicting air quality particles (NO2 or O3) based on historical weather data.
This function performs several feature engineering tasks, including:
- Creating lagged features for specified pollutants.
- Calculating rolling mean (SMA) features.
- Adding sine and cosine transformations of the weekday and month.
- Incorporating historical data for the same date in the previous year.
Parameters:
----------
data : pd.DataFrame
A DataFrame containing historical weather and air quality data with a 'date' column.
target_particle : str
The target particle for prediction, must be either 'O3' or 'NO2'.
lag_days : int, optional
The number of days for which lagged features will be created. Default is 7.
sma_days : int, optional
The window size for calculating the simple moving average (SMA). Default is 7.
Returns:
-------
pd.DataFrame
A DataFrame containing the transformed features, ready for modeling.
Raises:
------
ValueError
If target_particle is not 'O3' or 'NO2'.
"""
lag_features = [
"NO2",
"O3",
"wind_speed",
"mean_temp",
"global_radiation",
"minimum_visibility",
"humidity",
]
if target_particle == "NO2":
lag_features = lag_features + ["percipitation", "pressure"]
if target_particle not in ["O3", "NO2"]:
raise ValueError("target_particle must be 'O3' or 'NO2'")
data = data.copy()
data["date"] = pd.to_datetime(data["date"])
data = data.sort_values("date").reset_index(drop=True)
# Extract 'weekday' and 'month' from 'date' if not present
if "weekday" not in data.columns or data["weekday"].dtype == object:
data["weekday"] = data["date"].dt.weekday # Monday=0, Sunday=6
if "month" not in data.columns:
data["month"] = data["date"].dt.month # 1 to 12
# Create sine and cosine transformations for 'weekday' and 'month'
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
data["month_sin"] = np.sin(2 * np.pi * (data["month"] - 1) / 12)
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
# Create lagged features for the specified lag days
for feature in lag_features:
for lag in range(1, lag_days + 1):
data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)
# Create SMA features
for feature in lag_features:
data[f"{feature}_sma_{sma_days}"] = (
data[feature].rolling(window=sma_days).mean()
)
# Create particle data (NO2 and O3) from the same time last year
past_data = get_past_combined_data()
# Today last year
data["O3_last_year"] = past_data["O3"].iloc[-4]
data["NO2_last_year"] = past_data["NO2"].iloc[-4]
# 7 days before today last year
for i in range(1, lag_days + 1):
data[f"O3_last_year_{i}_days_before"] = past_data["O3"].iloc[i - 1]
data[f"NO2_last_year_{i}_days_before"] = past_data["NO2"].iloc[i - 1]
# 3 days after today last year
data["O3_last_year_3_days_after"] = past_data["O3"].iloc[-1]
data["NO2_last_year_3_days_after"] = past_data["NO2"].iloc[-1]
# Drop missing values
rows_before = data.shape[0]
data = data.dropna().reset_index(drop=True)
rows_after = data.shape[0]
rows_dropped = rows_before - rows_after
print(f"Number of rows with missing values dropped: {rows_dropped}/{rows_before}")
print(data)
# Ensure the data is sorted by date in ascending order
data = data.sort_values("date").reset_index(drop=True)
# Define feature columns
exclude_cols = ["date", "weekday", "month"]
feature_cols = [col for col in data.columns if col not in exclude_cols]
# Split features and targets
x = data[feature_cols]
# Scale
repo_id = f"elisaklunder/Utrecht-{target_particle}-Forecasting-Model"
file_name = f"feature_scaler_{target_particle}.joblib"
path = hf_hub_download(repo_id=repo_id, filename=file_name)
feature_scaler = joblib.load(path)
X_scaled = feature_scaler.transform(x)
# Convert scaled data back to DataFrame for consistency
X_scaled = pd.DataFrame(X_scaled, columns=feature_cols, index=x.index)
return X_scaled
|