Spaces:
Runtime error
Runtime error
Commit
·
1340ce0
1
Parent(s):
85af65f
now
Browse files- app.py +84 -120
- pyproject.toml +18 -9
- uv.lock +0 -0
app.py
CHANGED
@@ -1,139 +1,103 @@
|
|
|
|
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
)
|
10 |
-
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
11 |
-
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
-
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
-
import chainlit as cl
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
user_prompt_template = """\
|
20 |
Context:
|
21 |
-
{context}
|
22 |
|
23 |
-
|
24 |
-
{question}
|
25 |
"""
|
26 |
-
user_role_prompt = UserRolePrompt(user_prompt_template)
|
27 |
-
|
28 |
-
class RetrievalAugmentedQAPipeline:
|
29 |
-
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
30 |
-
self.llm = llm
|
31 |
-
self.vector_db_retriever = vector_db_retriever
|
32 |
-
|
33 |
-
async def arun_pipeline(self, user_query: str):
|
34 |
-
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
|
35 |
-
|
36 |
-
context_prompt = ""
|
37 |
-
for context in context_list:
|
38 |
-
context_prompt += context[0] + "\n"
|
39 |
-
|
40 |
-
formatted_system_prompt = system_role_prompt.create_message()
|
41 |
-
|
42 |
-
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
43 |
-
|
44 |
-
async def generate_response():
|
45 |
-
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
46 |
-
yield chunk
|
47 |
-
|
48 |
-
return {"response": generate_response(), "context": context_list}
|
49 |
-
|
50 |
-
text_splitter = CharacterTextSplitter()
|
51 |
-
|
52 |
-
|
53 |
-
def process_file(file: AskFileResponse):
|
54 |
-
import tempfile
|
55 |
-
import shutil
|
56 |
-
|
57 |
-
print(f"Processing file: {file.name}")
|
58 |
-
|
59 |
-
# Create a temporary file with the correct extension
|
60 |
-
suffix = f".{file.name.split('.')[-1]}"
|
61 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
|
62 |
-
# Copy the uploaded file content to the temporary file
|
63 |
-
shutil.copyfile(file.path, temp_file.name)
|
64 |
-
print(f"Created temporary file at: {temp_file.name}")
|
65 |
-
|
66 |
-
# Create appropriate loader
|
67 |
-
if file.name.lower().endswith('.pdf'):
|
68 |
-
loader = PDFLoader(temp_file.name)
|
69 |
-
else:
|
70 |
-
loader = TextFileLoader(temp_file.name)
|
71 |
-
|
72 |
-
try:
|
73 |
-
# Load and process the documents
|
74 |
-
documents = loader.load_documents()
|
75 |
-
texts = text_splitter.split_texts(documents)
|
76 |
-
return texts
|
77 |
-
finally:
|
78 |
-
# Clean up the temporary file
|
79 |
-
try:
|
80 |
-
os.unlink(temp_file.name)
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Error cleaning up temporary file: {e}")
|
83 |
|
|
|
84 |
|
85 |
-
|
86 |
-
async def on_chat_start():
|
87 |
-
files = None
|
88 |
-
|
89 |
-
# Wait for the user to upload a file
|
90 |
-
while files == None:
|
91 |
-
files = await cl.AskFileMessage(
|
92 |
-
content="Please upload a Text or PDF file to begin!",
|
93 |
-
accept=["text/plain", "application/pdf"],
|
94 |
-
max_size_mb=2,
|
95 |
-
timeout=180,
|
96 |
-
).send()
|
97 |
-
|
98 |
-
file = files[0]
|
99 |
-
|
100 |
-
msg = cl.Message(
|
101 |
-
content=f"Processing `{file.name}`..."
|
102 |
-
)
|
103 |
-
await msg.send()
|
104 |
|
105 |
-
|
106 |
-
texts = process_file(file)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
vector_db = VectorDatabase()
|
112 |
-
vector_db = await vector_db.abuild_from_list(texts)
|
113 |
-
|
114 |
-
chat_openai = ChatOpenAI()
|
115 |
|
116 |
-
|
117 |
-
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
118 |
-
vector_db_retriever=vector_db,
|
119 |
-
llm=chat_openai
|
120 |
-
)
|
121 |
-
|
122 |
-
# Let the user know that the system is ready
|
123 |
-
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
124 |
-
await msg.update()
|
125 |
|
126 |
-
|
|
|
127 |
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
result = await chain.arun_pipeline(message.content)
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
await msg.send()
|
|
|
1 |
+
!pip install -qU langchain-huggingface langchain-community faiss-cpu huggingface-hub==0.27.0
|
2 |
+
|
3 |
import os
|
4 |
+
import getpass
|
5 |
+
|
6 |
+
# Load environment variables
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
YOUR_LLM_ENDPOINT_URL = "https://z1nsc3eoo5nxnoos.us-east-1.aws.endpoints.huggingface.cloud"
|
10 |
+
|
11 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
12 |
+
|
13 |
+
hf_llm = HuggingFaceEndpoint(
|
14 |
+
endpoint_url=f"{YOUR_LLM_ENDPOINT_URL}",
|
15 |
+
task="text-generation",
|
16 |
+
max_new_tokens=512,
|
17 |
+
top_k=10,
|
18 |
+
top_p=0.95,
|
19 |
+
typical_p=0.95,
|
20 |
+
temperature=0.01,
|
21 |
+
repetition_penalty=1.03,
|
22 |
)
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
from langchain_core.prompts import PromptTemplate
|
25 |
+
|
26 |
+
RAG_PROMPT_TEMPLATE = """\
|
27 |
+
<|start_header_id|>system<|end_header_id|>
|
28 |
+
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
|
29 |
+
|
30 |
+
<|start_header_id|>user<|end_header_id|>
|
31 |
+
User Query:
|
32 |
+
{query}
|
33 |
|
|
|
34 |
Context:
|
35 |
+
{context}<|eot_id|>
|
36 |
|
37 |
+
<|start_header_id|>assistant<|end_header_id|>
|
|
|
38 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
41 |
|
42 |
+
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
YOUR_EMBED_MODEL_URL = "https://jt4esmqgyp7m3fk8.us-east-1.aws.endpoints.huggingface.cloud"
|
|
|
45 |
|
46 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
47 |
+
model=YOUR_EMBED_MODEL_URL,
|
48 |
+
task="feature-extraction",
|
49 |
+
)
|
50 |
|
51 |
+
!git clone https://github.com/dbredvick/paul-graham-to-kindle.git
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
from langchain_community.document_loaders import TextLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
document_loader = TextLoader("./paul-graham-to-kindle/paul_graham_essays.txt")
|
56 |
+
documents = document_loader.load()
|
57 |
|
58 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
59 |
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
|
61 |
+
split_documents = text_splitter.split_documents(documents)
|
62 |
+
len(split_documents)
|
63 |
|
64 |
+
from langchain_community.vectorstores import FAISS
|
|
|
65 |
|
66 |
+
for i in range(0, len(split_documents), 32):
|
67 |
+
if i == 0:
|
68 |
+
vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
|
69 |
+
continue
|
70 |
+
vectorstore.add_documents(split_documents[i:i+32])
|
71 |
+
|
72 |
+
hf_retriever = vectorstore.as_retriever()
|
73 |
+
|
74 |
+
from operator import itemgetter
|
75 |
+
from langchain.schema.output_parser import StrOutputParser
|
76 |
+
from langchain.schema.runnable import RunnablePassthrough
|
77 |
+
|
78 |
+
@cl.on_chat_start
|
79 |
+
async def start_chat():
|
80 |
+
"""
|
81 |
+
This function will be called at the start of every user session.
|
82 |
+
|
83 |
+
We will build our LCEL RAG chain here, and store it in the user session.
|
84 |
+
|
85 |
+
The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
|
86 |
+
"""
|
87 |
+
### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
|
88 |
+
lcel_rag_chain = {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}| rag_prompt | hf_llm
|
89 |
+
|
90 |
+
cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
|
91 |
+
|
92 |
+
@cl.on_message
|
93 |
+
async def main(message: cl.Message):
|
94 |
+
"""
|
95 |
+
This function will be called whenever a user sends a message to the bot.
|
96 |
+
"""
|
97 |
+
chainlit_question = message.content
|
98 |
+
response = lcel_rag_chain.invoke({"question": chainlit_question})
|
99 |
+
chainlit_answer = response["response"].content
|
100 |
+
|
101 |
+
msg = cl.Message(content=chainlit_answer)
|
102 |
+
await msg.send()
|
103 |
|
|
pyproject.toml
CHANGED
@@ -1,14 +1,23 @@
|
|
1 |
[project]
|
2 |
-
name = "
|
3 |
version = "0.1.0"
|
4 |
-
description = "
|
5 |
readme = "README.md"
|
6 |
-
requires-python = ">=3.
|
7 |
dependencies = [
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
]
|
|
|
|
1 |
[project]
|
2 |
+
name = "15-open-source-endpoints"
|
3 |
version = "0.1.0"
|
4 |
+
description = "Session 15 - Open Source Endpoints"
|
5 |
readme = "README.md"
|
6 |
+
requires-python = ">=3.9"
|
7 |
dependencies = [
|
8 |
+
"asyncio===3.4.3",
|
9 |
+
"chainlit==2.2.1",
|
10 |
+
"huggingface-hub==0.27.0",
|
11 |
+
"langchain-huggingface==0.1.2",
|
12 |
+
"langchain==0.3.19",
|
13 |
+
"langchain-community==0.3.18",
|
14 |
+
"langsmith==0.3.11",
|
15 |
+
"python-dotenv==1.0.1",
|
16 |
+
"tqdm==4.67.1",
|
17 |
+
"langchain-openai==0.3.7",
|
18 |
+
"langchain-text-splitters==0.3.6",
|
19 |
+
"jupyter>=1.1.1",
|
20 |
+
"faiss-cpu>=1.10.0",
|
21 |
+
"websockets>=15.0",
|
22 |
]
|
23 |
+
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|