MikeCraBash commited on
Commit
a8b9a54
·
1 Parent(s): dc8b645
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+ from chainlit.types import AskFileResponse
4
+ from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
5
+ from aimakerspace.openai_utils.prompts import (
6
+ UserRolePrompt,
7
+ SystemRolePrompt,
8
+ AssistantRolePrompt,
9
+ )
10
+ from aimakerspace.openai_utils.embedding import EmbeddingModel
11
+ from aimakerspace.vectordatabase import VectorDatabase
12
+ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
13
+ import chainlit as cl
14
+
15
+ system_template = """\
16
+ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
17
+ system_role_prompt = SystemRolePrompt(system_template)
18
+
19
+ user_prompt_template = """\
20
+ Context:
21
+ {context}
22
+
23
+ Question:
24
+ {question}
25
+ """
26
+ user_role_prompt = UserRolePrompt(user_prompt_template)
27
+
28
+ class RetrievalAugmentedQAPipeline:
29
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
30
+ self.llm = llm
31
+ self.vector_db_retriever = vector_db_retriever
32
+
33
+ async def arun_pipeline(self, user_query: str):
34
+ context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
35
+
36
+ context_prompt = ""
37
+ for context in context_list:
38
+ context_prompt += context[0] + "\n"
39
+
40
+ formatted_system_prompt = system_role_prompt.create_message()
41
+
42
+ formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
43
+
44
+ async def generate_response():
45
+ async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
46
+ yield chunk
47
+
48
+ return {"response": generate_response(), "context": context_list}
49
+
50
+ text_splitter = CharacterTextSplitter()
51
+
52
+
53
+ def process_text_file(file: AskFileResponse):
54
+ import tempfile
55
+
56
+ with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
57
+ temp_file_path = temp_file.name
58
+
59
+ with open(file.path, "rb") as f:
60
+ content = f.read()
61
+
62
+ with open(temp_file_path, "wb") as f:
63
+ f.write(content)
64
+
65
+ #file response no longer has a content field
66
+
67
+ text_loader = TextFileLoader(temp_file_path)
68
+ documents = text_loader.load_documents()
69
+ texts = text_splitter.split_texts(documents)
70
+ return texts
71
+
72
+
73
+ @cl.on_chat_start
74
+ async def on_chat_start():
75
+ files = None
76
+
77
+ # Wait for the user to upload a file
78
+ while files == None:
79
+ files = await cl.AskFileMessage(
80
+ content="Please upload a Text File file to begin!",
81
+ accept=["text/plain"],
82
+ max_size_mb=2,
83
+ timeout=180,
84
+ ).send()
85
+
86
+ file = files[0]
87
+
88
+ msg = cl.Message(
89
+ content=f"Processing `{file.name}`..."
90
+ )
91
+ await msg.send()
92
+
93
+ # load the file
94
+ texts = process_text_file(file)
95
+
96
+ print(f"Processing {len(texts)} text chunks")
97
+
98
+ # Create a dict vector store
99
+ vector_db = VectorDatabase()
100
+ vector_db = await vector_db.abuild_from_list(texts)
101
+
102
+ chat_openai = ChatOpenAI()
103
+
104
+ # Create a chain
105
+ retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
106
+ vector_db_retriever=vector_db,
107
+ llm=chat_openai
108
+ )
109
+
110
+ # Let the user know that the system is ready
111
+ msg.content = f"Processing `{file.name}` done. You can now ask questions!"
112
+ await msg.update()
113
+
114
+ cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
115
+
116
+
117
+ @cl.on_message
118
+ async def main(message):
119
+ chain = cl.user_session.get("chain")
120
+
121
+ msg = cl.Message(content="")
122
+ result = await chain.arun_pipeline(message.content)
123
+
124
+ async for stream_resp in result["response"]:
125
+ await msg.stream_token(stream_resp)
126
+
127
+ await msg.send()