File size: 6,721 Bytes
cc2f913
 
 
 
 
 
009c407
a95ae71
 
 
 
 
 
 
 
 
 
 
 
 
cc2f913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4854265
a95ae71
cc2f913
 
c4d7c3f
35b5720
a95ae71
 
c4d7c3f
 
 
 
a95ae71
 
 
 
 
 
4854265
 
 
cc2f913
a95ae71
 
35b5720
a95ae71
eb8a07c
cc2f913
a95ae71
 
 
 
 
 
 
 
 
 
cc2f913
 
35b5720
a95ae71
597f1d0
a95ae71
009c407
597f1d0
35b5720
597f1d0
a95ae71
597f1d0
 
a95ae71
 
597f1d0
 
a95ae71
 
 
 
 
cc2f913
a95ae71
cc2f913
 
 
 
 
a95ae71
cc2f913
 
 
 
 
 
 
 
a95ae71
 
 
 
 
35b5720
a95ae71
 
 
2e104cc
a95ae71
 
 
cc2f913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95ae71
cc2f913
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
import pysr
import time

import contextlib
import numpy as np

@contextlib.contextmanager
def temp_seed(seed):
    state = np.random.get_state()
    np.random.seed(seed)
    try:
        yield
    finally:
        np.random.set_state(state)


#Change the following code to your file
################################################################################
TRIALS_FOLDER = 'trials'
NUMBER_TRIALS_PER_RUN = 1

def run_trial(args):
    """Evaluate the model loss using the hyperparams in args

    :args: A dictionary containing all hyperparameters
    :returns: Dict with status and loss from cross-validation

    """

    print("Running on", args)
    for key in 'niterations npop'.split(' '):
        args[key] = int(args[key])


    total_steps = 10*100*1000
    niterations = args['niterations']
    npop = args['npop']
    if niterations == 0 or npop == 0: 
        print("Bad parameters")
        return {'status': 'ok', 'loss': np.inf}
        
    args['ncyclesperiteration'] = int(total_steps / (niterations * npop))
    args['topn'] = 10
    args['parsimony'] = 1e-3
    args['annealing'] = True

    if args['npop'] < 20 or args['ncyclesperiteration'] < 3:
        print("Bad parameters")
        return {'status': 'ok', 'loss': np.inf}


    args['weightDoNothing'] = 1.0

    maxTime = 30
    ntrials = 2
    equation_file = f'.hall_of_fame_{np.random.rand():f}.csv'

    with temp_seed(0):
        X = np.random.randn(100, 5)*3

    eval_str = ["np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
    "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)",
    "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
    "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4",
    "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"]

    print(f"Starting", str(args))
    try:
        trials = []
        for i in range(3, 6):
            print(f"Starting test {i}")
            for j in range(ntrials):
                print(f"Starting trial {j}")
                trial = pysr.pysr(
                    test=f"simple{i}",
                    threads=4,
                    binary_operators=["plus", "mult", "pow", "div"],
                    unary_operators=["cos", "exp", "sin", "loga", "abs"],
                    equation_file=equation_file,
                    timeout=maxTime,
                    maxsize=25,
                    verbosity=0,
                    **args)
                if len(trial) == 0: raise ValueError
                trials.append(
                        np.min(trial['MSE'])**0.5 / np.std(eval(eval_str[i-1]))
                )
                print(f"Test {i} trial {j} with", str(args), f"got {trials[-1]}")

    except ValueError:
        print(f"Broken", str(args))
        return {
            'status': 'ok', # or 'fail' if nan loss
            'loss': np.inf
        }
    loss = np.average(trials)
    print(f"Finished with {loss}", str(args))

    return {
        'status': 'ok', # or 'fail' if nan loss
        'loss': loss
    }


space = {
    'niterations': hp.qlognormal('niterations', np.log(10), 1.0, 1),
    'npop': hp.qlognormal('npop', np.log(100), 1.0, 1),
    'alpha': hp.lognormal('alpha', np.log(10.0), 1.0),
    'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 1.0),
    'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 1.0),
    'perturbationFactor': hp.lognormal('perturbationFactor', np.log(1.0), 1.0),
    'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0),
    'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0),
    'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0),
    'weightInsertNode': hp.lognormal('weightInsertNode', np.log(0.5), 1.0),
    'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0),
    'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0),
    'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0),
}

################################################################################



def merge_trials(trials1, trials2_slice):
    """Merge two hyperopt trials objects

    :trials1: The primary trials object
    :trials2_slice: A slice of the trials object to be merged,
        obtained with, e.g., trials2.trials[:10]
    :returns: The merged trials object

    """
    max_tid = 0
    if len(trials1.trials) > 0:
        max_tid = max([trial['tid'] for trial in trials1.trials])

    for trial in trials2_slice:
        tid = trial['tid'] + max_tid + 1
        hyperopt_trial = Trials().new_trial_docs(
                tids=[None],
                specs=[None],
                results=[None],
                miscs=[None])
        hyperopt_trial[0] = trial
        hyperopt_trial[0]['tid'] = tid
        hyperopt_trial[0]['misc']['tid'] = tid
        for key in hyperopt_trial[0]['misc']['idxs'].keys():
            hyperopt_trial[0]['misc']['idxs'][key] = [tid]
        trials1.insert_trial_docs(hyperopt_trial) 
        trials1.refresh()
    return trials1

loaded_fnames = []
trials = None
# Run new hyperparameter trials until killed
while True:
    np.random.seed()

    # Load up all runs:
    import glob
    path = TRIALS_FOLDER + '/*.pkl'
    for fname in glob.glob(path):
        if fname in loaded_fnames:
            continue

        trials_obj = pkl.load(open(fname, 'rb'))
        n_trials = trials_obj['n']
        trials_obj = trials_obj['trials']
        if len(loaded_fnames) == 0: 
            trials = trials_obj
        else:
            print("Merging trials")
            trials = merge_trials(trials, trials_obj.trials[-n_trials:])

        loaded_fnames.append(fname)

    print("Loaded trials", len(loaded_fnames))
    if len(loaded_fnames) == 0:
        trials = Trials()

    n = NUMBER_TRIALS_PER_RUN
    try:
        best = fmin(run_trial,
            space=space,
            algo=tpe.suggest,
            max_evals=n + len(trials.trials),
            trials=trials,
            verbose=1,
            rstate=np.random.RandomState(np.random.randint(1,10**6))
            )
    except hyperopt.exceptions.AllTrialsFailed:
        continue

    print('current best', best)
    hyperopt_trial = Trials()

    # Merge with empty trials dataset:
    save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
    new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + str(time.time()) + '.pkl'
    pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
    loaded_fnames.append(new_fname)